
How to Use Player/Stage

Jennifer Owen

July 10, 2009

This document is intended as a guide for anyone learning Player/Stage for
the first time. It explains the process of setting up a new simulation environment
and how to then make your simulation do something, using a case study along
the way. Whilst it is aimed at Player/Stage users, those just wishing to use
Player on their robot may also find sections of this document useful (particularly
the parts about coding with Player).

If you have any questions about using Player/Stage there is a guide to getting
help from the Player comunity here:

http://playerstage.sourceforge.net/wiki/Getting_help

1



Contents

1 Introduction 3
1.1 A Note on Installing Player/Stage . . . . . . . . . . . . . . . . . 3

2 The Basics 3
2.1 Important File Types . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Interfaces, Drivers and Devices . . . . . . . . . . . . . . . . . . . 4

3 Building a World 5
3.1 Building an Empty World . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Describing the Player/Stage Window . . . . . . . . . . . . 11
3.1.3 Making a Basic Worldfile . . . . . . . . . . . . . . . . . . 12

3.2 Building a Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Sensors and Devices . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 An Example Robot . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Building Other Stuff . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Writing a Configuration (.cfg) File 31
4.1 Device Addresses - key:host:robot:interface:index . . . . . . . . . 33
4.2 Putting the Configuration File Together . . . . . . . . . . . . . . 34

5 Getting Your Simulation To Run Your Code 36
5.1 Connecting to the Server and Proxies With Your Code . . . . . . 37

5.1.1 Setting Up Connections: an Example. . . . . . . . . . . . 39
5.2 Interacting with Proxies . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Position2dProxy . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 SonarProxy . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 LaserProxy . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.4 RangerProxy . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.5 BlobfinderProxy . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.6 GripperProxy . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.7 SimulationProxy . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.8 General Useful Commands . . . . . . . . . . . . . . . . . 47

5.3 Using Proxies: A Case Study . . . . . . . . . . . . . . . . . . . . 47
5.3.1 The Control Architecture . . . . . . . . . . . . . . . . . . 48
5.3.2 Beginning the Code . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Wander . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.4 Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . 51
5.3.5 Move To Item . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.6 Collect Item . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Simulating Multiple Robots . . . . . . . . . . . . . . . . . . . . . 56

6 Useful Links 58

7 Appendices 59

2



1 Introduction

Player/Stage is a robot simulation tool, it comprises of one program, Player,
which is a Hardware Abstraction Layer. That means that it talks to the bits of
hardware on the robot (like a claw or a camera) and lets you control them with
your code, meaning you don’t need to worry about how the various parts of the
robot work. Stage is a plugin to Player which listens to what Player is telling
it to do and turns these instructions into a simulation of your robot. It also
simulates sensor data and sends this to Player which in turn makes the sensor
data available to your code.

A simulation then, is composed of three parts:

• Your code. This talks to Player.

• Player. This takes your code and sends instructions to a robot. From the
robot it gets sensor data and sends it to your code.

• Stage. Stage interfaces with Player in the same way as a robot’s hardware
would. It receives instructions from Player and moves a simulated robot
in a simulated world, it gets sensor data from the robot in the simulation
and sends this to Player.

Together Player and Stage are called Player/Stage, and they make a simulation
of your robots.

These instructions will be focussing on how to use Player/Stage to make
a simulation, but hopefully this will still be a useful resource for anyone just
using Player (which is the same thing but on a real robot, without any simulation
software).

1.1 A Note on Installing Player/Stage

Instructions on how to install Player/Stage onto your computer aren’t really the
focus of this document. It is very difficult though. If you’re lucky the install will
work first time but there are a lot of dependencies which may need installing.
In Linux there are the install programmes “synaptic” or “aptitude” which will
install a package and also get its dependencies, but these aren’t common to all
Linux distributions. There is another install program called “apt-get” but this
won’t install dependencies for you. For computers running Ubuntu there is a
reasonable set of instructions here:

http://www.control.aau.dk/~tb/wiki/index.php/Installing_Player_
and_Stage_in_Ubuntu

Alternatively, you try the suggestions on the Player “getting help” page:

http://playerstage.sourceforge.net/wiki/Getting_help

2 The Basics

2.1 Important File Types

In Player/Stage there are 3 kinds of file that you need to understand to get
going with Player/Stage:

3



• a .world file

• a .cfg (configuration) file

• a .inc (include) file

The .world file tells Player/Stage what things are available to put in the world.
In this file you describe your robot, any items which populate the world and
the layout of the world. The .inc file follows the same syntax and format of a
.world file but it can be included. So if there is an object in your world that
you might want to use in other worlds, such as a model of a robot, putting the
robot description in a .inc file just makes it easier to copy over, it also means
that if you ever want to change your robot description then you only need to
do it in one place and your multiple simulations are changed too.

The .cfg file is what Player reads to get all the information about the robot
that you are going to use.This file tells Player which drivers it needs to use in
order to interact with the robot, if you’re using a real robot these drivers are
built in to Player1, alternatively, if you want to make a simulation, the driver
is always Stage (this is how Player uses Stage in the same way it uses a robot:
it thinks that it is a hardware driver and communicates with it as such). The
.cfg file tells Player how to talk to the driver, and how to interpret any data
from the driver so that it can be presented to your code. Items described in the
.world file should be described in the .cfg file if you want your code to be able to
interact with that item (such as a robot), if you don’t need your code to interact
with the item then this isn’t necessary. The .cfg file does all this specification
using interfaces and drivers, which will be discussed in the following section.

2.2 Interfaces, Drivers and Devices

• Drivers are pieces of code that talk directly to hardware. These are built
in to Player so it is not important to know how to write these as you begin
to learn Player/Stage. The drivers are specific to a piece of hardware so,
say, a laser driver will be different to a camera driver, and also different
to a driver for a different brand of laser. This is the same as the way that
drivers for graphics cards differ for each make and model of card. Drivers
produce and read information which conforms to an “interface”.

• Interfaces are a set way for a driver to send and receive information from
Player. Like drivers, interfaces are also built in to Player and there is a big
list of them in the Player manual2. They specify the syntax and semantics
of how drivers and Player interact.

• A device is a driver that is bound to an interface so that Player can talk
to it directly. This means that if you are working on a real robot that
you can interact with a real device (laser, gripper, camera etc) on the real
robot, in a simulated robot you can interact with their simulations.

The official documentation actually describes these 3 things quite well with
an example.

1Or you can download or write your own drivers, but I’m not going to talk about how to
do this here.

2http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group interfaces.html

4



Consider the laser interface. This interface defines a format in
which a planar range-sensor can return range readings (basically a
list of ranges, with some meta-data). The laser interface is just that:
an interface. You can’t do anything with it.

Now consider the sicklms200 driver. This driver controls a SICK
LMS200, which is particular planar range sensor that is popular
in mobile robot applications. The sicklms200 driver knows how to
communicate with the SICK LMS200 over a serial line and retrieve
range data from it. But you don’t want to access the range data
in some SICK-specific format. So the driver also knows how to
translate the retrieved data to make it conform to the format defined
by the laser interface.

The sicklms200 driver can be bound to the laser interface . . . to
create a device, which might have the following address:

localhost:6665:laser:0
The fields in this address correspond to the entries in the player devaddr t

structure: host, robot, interface, and index. The host and robot
fields (localhost and 6665) indicate where the device is located. The
interface field indicates which interface the device supports, and thus
how it can be used. Because you might have more than one laser,
the index field allows you to pick among the devices that support
the given interface and are located on the given host:robot Other
lasers on the same host:robot would be assigned different indexes.

The last paragraph there gets a bit technical, but don’t worry. Player talks to
parts of the robot using ports (the default port is 6665), if you’re using Stage
then Player and Stage communicate through these ports (even if they’re running
on the same computer). All this line does is tell Player which port to listen to
and what kind of data to expect. In the example it’s laser data which is being
transmitted on port 6665 of the computer that Player is running on (localhost).
You could just as easily connect to another computer by using its IP address
instead of “localhost”. The specifics of writing a device address in this way will
be described in section 4.

3 Building a World

First we will run a world and configuration file that comes bundled with Stage.
In your bash shell navigate to the Stage/worlds folder, by default (in Linux at
least) this is /usr/local/share/stage/worlds. Once in the correct folder type the
following command to run the “simple world” that comes with Player/Stage:

player simple.cfg

Assuming Player/Stage is installed properly you should now have a window open
which looks figure 1. At this stage you can drag and drop the robot around its
world with your mouse, but you can also tele-operate the robot using the Player
Viewer program. In a separate terminal whilst the Player/Stage simulation
window is still open, type:

playerv --position2d --laser

5



Figure 1: The simple.cfg world after being run

6



Figure 2: The simple.cfg world seen with Player Viewer

Figure 3: How to Remote Control (tele-operate) the Stage Robot

The --position2d and --laser options tell the playerv (Player Viewer) pro-
gram that you want to look at the positional data and the laser data that is
available to the robot. This should open a window which looks like figure 2.

To be able to remote control the robot you click Device → position2d:0 →
Command as shown in figure 3. A cross-hair should appear over the robot in
the Player Viewer window, which if you drag around will cause the robot to
move in the Player/Stage simulation (figure 1).

3.1 Building an Empty World

As you can see in section 3, when we tell Player to build a world we only give it
the .cfg file as an input. This .cfg file needs to tell us where to find our .world
file, which is where all the items in the simulation are described. To explain how
to build a Stage world containing nothing but walls we will use an example.
To start building an empty world we need a .cfg file. First create a document
called empty.cfg and copy the following code into it:

driver
(

name "stage"
plugin "libstageplugin"

provides ["simulation:0" ]

7



# load the named file into the simulator
worldfile "empty.world"

)

The configuration file syntax is described in section 4, but basically what is
happening here is that your configuration file is telling Player that there is a
driver called stage in the libstageplugin library, and this will give Player
data which conforms to the simulation interface. To build the simulation
Player needs to look in the worldfile called empty.world which is stored in the
same folder as this .cfg. If it was stored elsewhere you would have to include a
filepath, for example ./worlds/empty.world. Lines that begin with the hash
symbol (#) are comments. When you build a simulation, any simulation, in
Stage the above chunk of code should always be the first thing the configuration
file says. Obviously the name of the worldfile should be changed depending on
what you called it though.

Now a basic configuration file has been written, it is time to tell Player/Stage
what to put into this simulation. This is done in the .world file.

3.1.1 Models

A worldfile is basically just a list of models that describes all the stuff in the
simulation. This includes the basic environment, robots and other objects. The
basic type of model is called “model”, and you define a model using the following
syntax:

define model_name model
(

# parameters
)

This tells Player/Stage that you are defining a model which you have called
model_name, and all the stuff in the round brackets are parameters of the
model. To begin to understand Player/Stage model parameters, let’s look at
the map.inc file that comes with Stage, this is used to describe the basic envi-
ronment in the simulation (e.g. walls the robots can bump into):

define map model
(

# sombre, sensible, artistic
color "black"

# most maps will need a bounding box
boundary 1

gui_nose 1
gui_grid 1
gui_movemask 0
gui_outline 0

fiducial_return 0
gripper_return 0

8



)

We can see from the first line that they are defining a model called map.

• color: Tells Player/Stage what colour to render this model, in this case
it is going to be black.

• boundary: Whether or not there is a bounding box around the model.
This is an example of a binary parameter, which means the if the number
next to it is 0 then it is false, if it is 1 or over then it’s true. So here we DO
have a bounding box around our “map” model so the robot can’t wander
out of our map.

• gui_nose: this tells Player/Stage that it should indicate which way the
model is facing. Figure 4 shows the difference between a map with a nose
and one without.

• gui_grid: this will superimpose a grid over the model. Figure 5 shows a
map with a grid.

• gui_movemask: this indicates whether it should be possible to drag and
drop the model. Here it is 0, so you cannot move the map model once
Player/Stage has been run. In section 3 when the Player/Stage example
simple.cfg was run it was possible to drag and drop the robot because
its gui_movemask variable was set to 1.

• gui_outline: indicates whether or not the model should be outlined.
This makes no difference to a map, but it can be useful when making
models of items within the world.

• fiducial_return: any parameter of the form some sensor return de-
scribes how that kind of sensor should react to the model. “Fiducial”
is a kind of robot sensor which will be described later in section 3.2.1.
Setting fiducial_return to 0 means that the map cannot be detected by
a fiducial sensor.

• gripper_return: Like fiducial_return, gripper_return tells Player/Stage
that your model can be detected by the relevant sensor, ie it can be gripped
by a gripper. This parameter also indicates whether the model can be
pushed. Here gripper_return is set to 0 so the map cannot be pushed
by a robot and it cannot be gripped by a gripper.

To make use of the map.inc file we put the following code into our world
file:

include "map.inc"

This inserts the map.inc file into our world file where the include line is. This
assumes that your worldfile and map.inc file are in the same folder, if they are
not then you’ll need to include the filepath in the quotes. Once this is done we
can modify our definition of the map model to be used in the simulation. For
example:

9



Figure 4: The left picture shows an empty map without a nose. The right
picture shows the same map with a nose to indicate orientation, this is the
horizontal line from the centre of the map to the right, it shows that the map
is actually facing to the right.

Figure 5: An empty map with gui grid enabled. With gui grid disabled this
would just be an empty white square.

10



Figure 6: The left image is our ”helloworld.png” bitmap, the right image is what
Player/Stage interprets that bitmap as. The black areas are walls, the robot
can move everywhere else.

map
(

bitmap "bitmaps/helloworld.png"
size [12 5]

)

What this means is that we are using the model “map”, and making some extra
definitions; both “bitmap” and “size” are parameters of a Player/Stage model.
Here we are telling Player/Stage that we defined a bunch of parameters for a
type of model called “map” (contained in map.inc) and now we’re using this
“map” model definition and adding a few extra parameters.

• bitmap: this is the filepath to a bitmap, which can be type bmp, jpeg, gif
or png. Black areas in the bitmap tell the model what shape to be, non-
black areas are not rendered, this is illustrated in figure 6. In the map.inc
file we told the map that its “color” would be black. This parameter does
not affect how the bitmaps are read, Player/Stage will always look for
black in the bitmap, the “color” parameter just alters what colour the
map is rendered in the simulation.

• size: This is the size in metres of the simulation. All sizes you give in
the world file are in metres, and they represent the actual size of things.
If you have 3m x 4m robot testing arena which you want to simulate then
the size here is [3.0 4.0]. The first number is the size in the x dimension,
the second is the y dimension.

A full list of model parameters and their descriptions can be found in the
official Stage manual3. Most of the useful parameters have already been de-
scribed here, however there are a few other types of model which are relevant
to building simulations of robots, these will be described later in section 3.2.

3.1.2 Describing the Player/Stage Window

The worldfile also can be used to describe the simulation window that Player/Stage
creates. Player/Stage will automatically make a window for the simulation if

3http://playerstage.sourceforge.net/doc/stage-3.0.1/group model.html

11



you don’t put any window details in the worldfile, however, it is often useful
to put this information in anyway. This prevents a large simulation from being
too big for the window, or to increase or decrease the size of the simulation.

Like a model, a window is an inbuilt, high-level entity with lots of parameters.
Unlike models though, there can be only one window in a simulation and only
a few of its parameters are really needed. The simulation window is described
with the following syntax:

window
(

parameters...
)

The two most important parameters for the window are size and scale.

• size: This is the size the simulation window will be in pixels. You need
to define both the width and height of the window using the following
syntax: size [width height].

• scale: This is how many metres of the simulated environment each pixel
shows. The bigger this number is, the smaller the simulation becomes.
The optimum value for the scale is map size

window size and it should be rounded
upwards slightly so the simulation is a little smaller than the window it’s
in.

A full list of window parameters can be found in the Stage manual under
“WorldGUI”4.

3.1.3 Making a Basic Worldfile

We have already discussed the basics of worldfile building: models and the
window. There are just a few more parameters to describe which don’t belong
in either a model or a window description which should be defined and then the
worldfile can be built.

• size: At this level this represents how big, in metres, the whole simula-
tion environment will be. This is completely separate from the map size
because it could be larger and there might be several different maps run-
ning in the same simulation (so more than one simulation could be run at
once). Generally though this just needs to be the same as the map size.
This parameter must be included in the worldfile otherwise the simulation
won’t work.

• interval_sim: This is how many simulated milliseconds there are be-
tween each update of the simulation window, the default is 100 millisec-
onds.

• interval_real: This is how many real milliseconds there are between
each update of the simulation window. Balancing this parameter and the
interval\_sim parameter controls the speed of the simulation. Again, the
default value is 100 milliseconds, both these interval parameter defaults
are fairly sensible, so it’s not always necessary to redefine them.

4http://playerstage.sourceforge.net/doc/stage-3.0.1/group worldgui.html

12



The Stage manual contains a list of the high-level worldfile parameters5.
Finally, we are able to write a worldfile!

include "map.inc"

# size of the whole simulation
size [15 15]

# configure the GUI window
window
(

size [ 700.0 700.0 ]
# 15/700 rounded up a bit

scale 0.025
)

# load an environment bitmap
map
(

bitmap "bitmaps/cave.png"
size [15 15]

)

If we save the above code as empty.world (correcting any filepaths if necessary)
we can run its corresponding empty.cfg file (see section 3.1) to get the simulation
shown in figure 7.

3.2 Building a Robot

In Player/Stage a robot is just a slightly advanced kind of model, all the pa-
rameters described in section 3.1.1 can still be applied.

3.2.1 Sensors and Devices

There are six built-in kinds of model that help with building a robot, they are
used to define the sensors and actuators that the robot has. These are associated
with a set of model parameters which define by which sensors the model can
be detected (these are the _returns mentioned earlier). Each of these built in
models acts as an interface (see section 2.2) between the simulation and Player.
If your robot has one of these kinds of sensor on it, then you need to use the
relevant model to describe the sensor, otherwise Stage and Player won’t be able
to pass the data between each other. It is possible to write your own interfaces,
but the stuff already included in Player/Stage should be sufficient for most
people’s needs. A full list of interfaces that Player supports can be found in
the Player manual6 although only the following are supported by the current
distribution of Stage (version 3.0.1). Unless otherwise stated, these models use
the Player interface that shares its name:

5http://playerstage.sourceforge.net/doc/stage-3.0.1/group world.html
6http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group interfaces.html

13



Figure 7: Our Empty World.

camera 7 The camera model adds a camera to the robot model and allows
your code to interact with the simulated camera. The camera parameters are
as follows:

• resolution [x y]: the resolution, in pixels, of the camera’s image.

• range [min max]: the minimum and maximum range that the camera
can detect

• fov [x y]: the field of view of the camera in degrees.

• pantilt [pan tilt]: the horizontal angle the camera can move through
(pan) and the vertical angle (tilt). So for instance pantilt [90 20] al-
lows the camera to move 45◦ left and 45◦ right and 10◦ up and 10◦ down.

blobfinder 8 This simulates colour detection software that can be run on
the image from the robot’s camera. It is not necessary to include a model of
the camera in your description of the robot if you want to use a blobfinder,
the blobfinder will work on its own. The blobfinder can only find a model if its
blob_return parameter is true. The parameters for the blobfinder are described
in the Stage manual, but the most useful ones are here:

• colors_count <int>: the number of different colours the blobfinder can
detect

7http://playerstage.sourceforge.net/doc/stage-3.0.1/group model camera.html
8http://playerstage.sourceforge.net/doc/stage-3.0.1/group model blobfinder.html

14



• colors [ ]: the names of the colours it can detect. This is given to
the blobfinder definition in the form ["black" "blue" "cyan"]. These
colour names are from the built in X11 colour database rgb.txt. This is
built in to Linux.9

• image [x y]: the size of the image from the camera, in pixels.

• range <float>: The maximum range that the camera can detect, in me-
tres.

• fov <float>: field of view of the blobfinder in RADIANS.

It is important to note that the syntax for the blobfinder model is different in
Stage versions 2.X.X and 3.X.X. The above parameters are specific to Stage
3.X.X, in Stage 2.X.X they have different names but do the same thing:

• channel_count <int>: same as colors count.

• channels [ ]: same as colors [ ].

• image [x y]: same as in Stage 3.X.X.

• range_max <float>: same as range

• ptz [pan_angle tilt_angle zoom_angle]: controls the areas that the
camera can look at. This works like pantilt of the camera model, the
zoom_angle is the field of view in DEGREES.

Additionally, in Stage 2.X.X blobfinder is a child of a deprecated model called
ptz. All this basically means is that when you define your blobfinder model you
need to use this syntax instead:

define model_name ptz
(

blobfinder
(

# parameters
)

)

fiducialfinder 10 A fiducial is a fixed point in an image, so the fiducial finder
simulates image processing software that locates fixed points in an image. The
fiducialfinder is able to locate objects in the simulation whose fiducial_return
parameter is set to true. Stage also allows you to specify different types of
fiducial using the fiducial_key parameter of a model. This means that you
can make the robots able to tell the difference between different fiducials by
what key they transmit. The fiducial finder and the concept of fiducial_keys
is properly explained in the Stage manual.

9rgb.txt can normally be found at /usr/share/X11/rgb.txt assuming it’s properly installed,
alternatively a Google search for “rgb.txt” will give you the document.

10http://playerstage.sourceforge.net/doc/stage-3.0.1/group model fiducial.html

15



ranger 11 This simulates any kind of obstacle detection device (e.g. sonars
or infra-red sensors). These can locate models whose ranger_return is true.
Using a ranger model you can define any number of ranger devices and apply
them all to a single robot. Unlike the other types of model this doesn’t use the
interface with its name but instead the sonar interface, there is more about
this in section 4.2. The parameters for the ranger model and their inputs are
described in the Stage manual, but basically:

• scount <int>: The number of ranger sensors in this ranger model

• spose[ranger_number] [x y yaw]: Tells the simulator where the rangers
are placed around the robot. How to write the [x y yaw] data is explained
in section 3.2.2.

• ssize [x y]: how big the sensors are.

• sview [min max fov]: defines the maximum and minimum distances
that can be sensed and also the field of view in degrees.

laser 12 A laser is a special case of ranger sensor which only allows one ranger
(so there’s none of the scount, spose stuff), but it has a very large field of view.
If a model has its laser_return parameter enabled then a laser can detect it.
Details about laser parameters can be found in the Stage manual, however the
most useful parameters are:

• range_min: The minimum range of the laser.

• range_max: the maximum range of the laser.

• fov: the field of view of the laser. In Stage 3.X.X this is in radians, in
Stage 2.X.X it is in degrees.

gripper 13 The gripper model is a simulation of the gripper you get on a
Pioneer robot.14 If you put a gripper on your robot model it means that your
robot is able to pick up objects and move them around within the simulation.
The online Stage manual says that grippers are deprecated in Stage 3.X.X,
however this is not actually the case and grippers are very useful if you want
your robot to be able to manipulate and move items. The parameters you can
use to customise the gripper model are:

• size [x y]: The x and y dimensions of the gripper.

• pose [x y yaw]: Where the gripper is placed on the robot.
11http://playerstage.sourceforge.net/doc/stage-3.0.1/group model ranger.html
12http://playerstage.sourceforge.net/doc/stage-3.0.1/group model laser.html
13http://playerstage.sourceforge.net/doc/Stage-2.0.0/group model gripper.html
14The Pioneer grippers looks like a big block on the front of the robot with two big sliders

that close around an object.

16



position 15 The position model simulates the robot’s odometry, this is when
the robot keeps track of where it is by recording how many times its wheels spin
and the angle it turns. This robot model is the most important of all because it
allows the robot model to be embodied in the world, meaning it can collide with
anything which has its obstacle_return parameter set to true. The position
model uses the position2d interface, which is essential for Player because it
tells Player where the robot actually is in the world. The most useful parameters
of the position model are:

• drive: Tells the odometry how the robot is driven. This is usually “diff”
which means the robot is controlled by changing the speeds of the left and
right wheels independently. Other possible values are “car” which means
the robot uses a velocity and a steering angle, or “omni” which means it
can control how it moves along the x and y axes of the simulation.

• localization: tells the model how it should record the odometry “odom”
if the robot calculates it as it moves along or “gps” for the robot to have
perfect knowledge about where it is in the simulation.

• odom_error [x y angle]: The amount of error that the robot will make
in the odometry recordings.

• mass <int>: How heavy the robot is.

3.2.2 An Example Robot

To demonstrate how to build a model of a robot in Player/Stage we will build
our own example. First we will describe the physical properties of the robot,
such as size, shape and mass. Then we will add sensors onto it so that it can
interact with its environment.

The Robot’s Body Let’s say we want to model a rubbish collecting robot
called “Bigbob”. The first thing we need to do is describe its basic shape, to do
this you need to know your robot’s dimensions in metres. Figure 8 shows the
basic shape of Bigbob drawn onto some cartesian coordinates, the coordinates
of the corners of the robot have been recorded. We can then build this model
using the polygons model parameter16:

define bigbob position
(

# the shape of Bigbob
polygons 1
polygon[0].points 6
polygon[0].point[0] [0 0]
polygon[0].point[1] [0 1]
polygon[0].point[2] [0.75 1]
polygon[0].point[3] [1 0.75]
polygon[0].point[4] [1 0.25]

15http://playerstage.sourceforge.net/doc/stage-3.0.1/group model position.html
16In this example we’re using polygons with the position model type but we could equally

use it with other model types.

17



Figure 8: The basic shape we want to make Bigbob, the units on the axes are
in metres.

polygon[0].point[5] [0.75 0]
)

In the first line of this code we state that we are defining a position model
called bigbob. Next polygons 1 says that this model will be built out of
one polygon. The following lines go on to describe the shape of this polygon;
polygon[0].points 6 says that the polygon has 6 corners and polygon[number].point[number] [x y]
gives the coordinates of each corner of the polygon in turn. It is important to go
around the robot doing each corner in turn (either clockwise or anti-clockwise)
otherwise Player/Stage won’t properly render the polygon.
Now in the same way as we built the body we can add on some teeth for Bigbob
to collect rubbish between:

define bigbob position
(

# actual size
size [1.25 1]

# the shape of Bigbob
polygons 3

# body
polygon[0].points 6
polygon[0].point[0] [0 0]
polygon[0].point[1] [0 1]
polygon[0].point[2] [0.75 1]
polygon[0].point[3] [1 0.75]

18



Figure 9: The new shape of Bigbob.

polygon[0].point[4] [1 0.25]
polygon[0].point[5] [0.75 0]

# first tooth
polygon[1].points 4
polygon[1].point[0] [1 0.75]
polygon[1].point[1] [1.25 0.75]
polygon[1].point[2] [1.25 0.625]
polygon[1].point[3] [1 0.625]

# second tooth
polygon[2].points 4
polygon[2].point[0] [1 0.375]
polygon[2].point[1] [1.25 0.375]
polygon[2].point[2] [1.25 0.25]
polygon[2].point[3] [1 0.25]

)

To declare the size of the robot you use the size [width height] parame-
ter, this will cause the polygon described to be scaled to fit into a box which is
width x height in size. The default size is 1 x 1 metre, so because the addition
of rubbish-collecting teeth made Bigbob longer, the size parameter was needed
to stop Player/Stage from making the robot smaller than it should be. In this
way we could have specified the polygon coordinates to be 4 times the distance
apart and then declared its size to be 1.25 x 1 metres, and we would have got
a robot the size we wanted. For a robot as large as Bigbob this is not really
important, but it could be useful when building models of very small robots. It
should be noted that it doesn’t actually matter where in the cartesian coordi-
nate system you place the polygon, instead of starting at (0, 0) it could just
as easily have started at (-1000, 12345). With the polygon parameter we just

19



Figure 10: A cartesian grid showing how angles are described.

describe the shape of the robot, not its size or location in the map.
You may have noticed that in figures 8 and 9 Bigbob is facing to the right of
the grid. When you place any item in a Player/Stage simulation they are, by
default, facing to the right hand side of the simulation. Figure 5 shows that the
grids use a typical Cartesian coordinate system, and so if you want to alter the
direction an object in the simulation is pointing (its “yaw”) any angles you give
use the x-axis as a reference, just like vectors in a Cartesian coordinate system
(see figure 10) and so the default yaw is 0◦. This is also why in section 3.1 the
gui_nose shows the map is facing to the right. Figure 11 shows a few examples
of robots with different yaws.

By default, Player/Stage assumes the robot’s centre of rotation is at its geo-
metric centre based on what values are given to the robot’s size parameter. Big-
bob’s size is 1.25 x 1 so Player/Stage will place its centre at (0.625, 0.5),
which means that Bigbob’s wheels would be closer to its teeth. Instead let’s
say that Bigbob’s centre of rotation is in the middle of its main body (shown
in figure 8) which puts the centre of rotation at (0.5, 0.5). To change this in
robot model you use the origin [x-offset y-offset z-offset] command:

define bigbob position
(

# actual size
size [1.25 1]
# centre of rotation offset
origin [0.125 0 0]

# the shape of Bigbob
polygons 3
...
...
...

)

Finally we will specify the mass and drive of Bigbob, these are both pa-
rameters of the position model and have been described earlier.

20



Figure 11: Starting from the top right robot and working anti-clockwise, the
yaws of these robots are 0, 90, -45 and 200.

define bigbob position
(

# actual size
size [1.25 1]
# centre of rotation offset
origin [0.125 0 0]

# the shape of Bigbob
polygons 3
...
...
...

# positonal things
mass 10.0
drive "diff"

)

The Robot’s Sensors Now that Bigbob’s body has been built let’s move on
to the sensors. We will put sonar and blobfinding sensors onto Bigbob so that
it can detect walls and see coloured blobs it can interpret as rubbish to collect.
We will also put a laser between Bigbob’s teeth so that it can detect when an
item passes in between them.

We will start with the sonars. The first thing to do is to define a model for
the sonar array that is going to be attached to Bigbob:

21



Figure 12: The position of Bigbob’s sonars (in red) relative to its origin. The
origin is marked with a cross, some of the distances from the origin to the sensors
have been marked. The remaining distances can be done by inspection.

define bigbobs_sonars ranger
(

# parameters...
)

Here we tell Player/Stage that we will define a set of sonar sensors called
bigbobs_sonars and we’re using the model type ranger to tell Player/Stage
that this is a model of some ranging devices. Let’s put four sonars on Bigbob,
one on the front of each tooth, and one on the front left and the front right
corners of its body.

When building Bigbob’s body we were able to use any location on a coor-
dinate grid that we wanted and could declare our shape polygons to be any
distance apart we wanted so long as we resized the model with size. In con-
trast, sensors - all sensors not just rangers - must be positioned according to the
robot’s origin and actual size. To work out the distances in metres it helps to
do a drawing of where the sensors will go on the robot and their distances from
the robot’s origin. When we worked out the shape of Bigbob’s body we used its
actual size, so we can use the same drawings again to work out the distances of
the sensors from the origin as shown in figure 12.

Now we know how many sensors we want, and their coordinates relative to
the origin we can begin to build our model of the sonar array. Here we will use
the scount and spose parameters mentioned in 3.2.1. The values for spose are
[x y yaw], remember that yaw is in degrees and is measured relative to the x
axis.

define bigbobs_sonars ranger
(

# number of sonars

22



scount 4

# define the pose of each transducer [xpos ypos heading]
spose[0] [ 0.75 0.1875 0 ] #fr left tooth
spose[1] [ 0.75 -0.1875 0 ] #fr right tooth
spose[2] [ 0.25 0.5 30] # left corner
spose[3] [ 0.25 -0.5 -30] # right corner

)

The process of working out where the sensors go relative to the origin of the
robot is the most complicated part of describing the sensor, the rest is easy. To
define the size, range and field of view of the sonars we just consult the sonar
device’s datasheet.

define bigbobs_sonars ranger
(

# number of sonars
scount 4

# define the pose of each transducer [xpos ypos heading]
spose[0] [ 0.75 0.1875 0 ] #fr left tooth
spose[1] [ 0.75 -0.1875 0 ] #fr right tooth
spose[2] [ 0.25 0.5 30] # left corner
spose[3] [ 0.25 -0.5 -30] # right corner

# define the field of view of each transducer
# [range_min range_max view_angle]
sview [0.3 2.0 10]

# define the size of each transducer [xsize ysize] in metres
ssize [0.01 0.05]

)

Now that Bigbob’s sonars are done we will attached a blobfinder:

define bigbobs_eyes blobfinder
(

# parameters
)

Bigbob is a rubbish-collector so here we should tell it what colour of rubbish
to look for. Let’s say that the intended application of Bigbob is in an orange
juice factory and he picks up any stray oranges or juice cartons that fall on the
floor. Oranges are orange, and juice cartons are (let’s say) dark blue so Bigbob’s
blobfinder will look for these two colours:

define bigbobs_eyes blobfinder
(

# number of colours to look for
colors_count 2

23



# which colours to look for
colors ["orange" "DarkBlue"]

)

Then we define the properties of the camera, again these come from a datasheet:

define bigbobs_eyes blobfinder
(

# number of colours to look for
colors_count 2

# which colours to look for
colors ["orange" "DarkBlue"]

# camera parameters
image [160 120] #resolution
range 5.00
fov 3.14159/3 # 60 degrees = pi/3 radians

)

In Stage 2.X.X the following code should be used instead:

# bigbob’s blobfinder
define bigbobs_eyes ptz
(

blobfinder
(

# number of colours to look for
channels_count 2

# which colours to look for
channels ["orange" "DarkBlue"]

# camera parameters
image [160 120] #resolution
range_max 5.00
ptz [0 0 60]

)
)

The last sensor that needs adding to Bigbob is the laser, which will be used
to detect whenever a piece of rubbish has been collected. Following the same
principles as for our previous sensor models we can create a description of this
laser:

define bigbobs_laser laser
(

range_min 0.0

# distance between teeth in metres
range_max 0.25

24



Figure 13: The position of Bigbob’s laser (in red) and its distance, in metres,
relative to its origin (marked with a cross).

fov 3.14159/9 # 20 degrees = pi/9 radians
# fov 20 # use this line instead of above if using stage 2.X.X

pose [0.625 0.125 270]
size [0.025 0.025]

)

With this laser we’ve set its maximum range to be the distance between teeth,
and the field of view is arbitrarily set to 20◦. We have calculated the laser’s
pose in exactly the same way as the sonars spose, by measuring the distance
from the laser’s centre to the robot’s centre of rotation, the laser’s yaw is set to
270◦ so that it points across Bigbob’s teeth. We also set the size of the laser to
be 2.5cm square so that it doesn’t obstruct the gap between Bigbob’s teeth.

Now that we have a robot body and sensor models all we need to do is put
them together and place them in the world. To add the sensors to the body we
need to go back to the bigbob position model:

define bigbob position
(

# actual size
size [1.25 1]
# centre of rotation offset
origin [0.125 0 0]

# the shape of Bigbob
polygons 3
...
...
...

25



# positonal things
mass 10.0
drive "diff"

# sensors attached to bigbob
bigbobs_sonars()
bigbobs_eyes()
bigbobs_laser()

)

The extra line bigbobs_sonars() adds the sonar model called bigbobs_sonars()
onto the bigbob model, likewise for bigbobs_eyes() and bigbobs_laser().
After this final step we now have a complete model of our robot bigbob, the full
code for which can be found in appendix A. At this point it’s worthwhile to copy
this into a .inc file, so that the model could be used again in other simulations
or worlds.
To put our Bigbob model into our empty world (see section 3.1.3) we need to
add the robot to our worldfile empty.world:

include "map.inc"
include "bigbob.inc"

# size of the whole simulation
size [15 15]

# configure the GUI window
window
(

size [ 700.000 700.000 ]
scale 0.025

)

# load an environment bitmap
map
(

bitmap "bitmaps/cave.png"
size [15 15]

)

bigbob
(

name "bob1"
pose [-5 -6 45]
color "red"

)

Here we’ve put all the stuff that describes Bigbob into a .inc file bigbob.inc,
and when we include this, all the code from the .inc file is inserted into the

26



.world file. The section here is where we put a version of the bigbob model into
our world:

bigbob
(

name "bob1"
pose [-5 -6 45]
color "green"

)

Bigbob is a model description, by not including any define stuff in the top
line there it means that we are making an instantiation of that model, with
the name bob1. Using an object-oriented programming analogy, bigbob is our
class, and bob1 is our object of class bigbob. The pose [x y yaw] parameter
works in the same was as spose [x y yaw] does. The only differences are that
the coordinates use the centre of the simulation as a reference point and pose
lets us specify the initial position and heading of the entire bob1 model, not
just one sensor within that model. Finally we specify what colour bob1 should
be, by default this is red. The pose and color parameters could have been
specified in our bigbob model but by leaving them out it allows us to vary the
colour and position of the robots for each different robot of type bigbob, so we
could declare multiple robots which are the same size, shape and have the same
sensors, but are rendered by Player/Stage in different colours and are initialised
at different points in the map.
When we run the new empty.world with Player/Stage we see our Bigbob robot
is occupying the world, as shown in figure 14. The dark mark on top of the
robot is the blobfinder camera.

3.3 Building Other Stuff

We established in section 3.2.2 that Bigbob works in a orange juice factory
collecting oranges and juice cartons. Now we need to build models to represent
the oranges and juice cartons so that Bigbob can interact with things.

We’ll start by building a model of an orange:

define orange model
(

# parameters...
)

The first thing to define is the shape of the orange. The polygons parameter
is one way of doing this, which we can use to build a blocky approximation of
a circle. An alternative to this is to use bitmap which we previously saw being
used to create a map. What the bitmap command actually does is take in a
picture, and turn it into a series of polygons which are connected together to
make a model the same shape as the picture. This is illustrated in figure 15.
To get rid of the blocks’ outlines add gui_outline 0 to the model description,
with the large ghost in figure 15 it’s not so much of a problem, but with smaller
models, like an orange, the black outlines prevent the model’s colour from being
visible.

27



Figure 14: Our bob1 robot placed in the empty world.

Figure 15: The left image is the original picture, the right image is its
Player/Stage interpretation.

28



Figure 16:
./bitmaps/circle.png

Figure 17: The orange model rendered in the
same Player/Stage window as Bigbob.

define orange model
(

bitmap "bitmaps/circle.png"
size [0.15 0.15]
color "orange"

gui_outline 0
gripper_return 1

)

In this code we describe a model called orange which uses a bitmap to define
its shape and represents an object which is 15cm by 15cm and coloured orange.
The gripper_return parameter is a special type of return because it means
that the model can be grabbed by a robot’s gripper but it also means the object
can be pushed a little bit in the simulation. We want our orange model to be
pushable so, even though Bigbob has no gripper, the orange’s gripper_return
parameter is set to true. Figure 17 shows our orange model next to Bigbob.

Building a juice carton model is similarly quite easy:

define carton model
(

# a carton is retangular
# so make a square shape and use size[]
polygons 1
polygon[0].points 4
polygon[0].point[0] [0 0]
polygon[0].point[1] [0 1]
polygon[0].point[2] [1 1]
polygon[0].point[3] [1 0]

# average carton size is ~ 20cm x 10cm x 5cm
size [0.1 0.2]

color "DarkBlue"
gripper_return 1

)

29



We can use the polygons command since juice cartons are boxy, with boxy
things it’s slightly easier to describe the shape with polygon than drawing a
bitmap and using that.

Now that we have described basic orange and carton models it’s time to
put some oranges and cartons into the simulation. This is done in the same way
as our example robot was put into the world:

orange
(

name "orange1"
pose [-2 -5 0]

)

carton
(

name "carton1"
pose [-3 -5 0]

)

We created models of oranges and cartons, and now we are declaring that there
will be an instance of these models (called orange1 and carton1 respectively) at
the given positions. Unlike with the robot, we declared the color of the models
in the description so we don’t need to do that here. If we did have different
colours for each orange or carton then it would mess up the blobfinding on
Bigbob because the robot is only searching for orange and dark blue. At this
point it would be useful if we could have more than just one orange or carton
in the world (Bigbob would not be very busy if there wasn’t much to pick up),
it turns out that this is also pretty easy:

orange(name "orange1" pose [-1 -5 0])
orange(name "orange2" pose [-2 -5 0])
orange(name "orange3" pose [-3 -5 0])
orange(name "orange4" pose [-4 -5 0])

carton(name "carton1" pose [-2 -4 0])
carton(name "carton2" pose [-2 -3 0])
carton(name "carton3" pose [-2 -2 0])
carton(name "carton4" pose [-2 -1 0])

Up until now we have been describing models with each parameter on a
new line, this is just a way of making it more readable for the programmer –
especially if there are a lot of parameters. If there are only a few parameters
or you want to repeat the code (as we’ve done here) it can all be put onto one
line. Here we declare that there will be four orange models in the simulation
with the names orange1 to orange4, we also need to specify different poses for
the models so they aren’t all on top of each other. Properties that the orange
models have in common (such as shape, colour or size) should all be in the
model definition.

The full worldfile is included in appendix B, this includes the orange and
carton models as well as the code for putting them in the simulation. Figure 18
shows the populated Player/Stage simulation.

30



Figure 18: The Bigbob robot placed in the simulation along with junk for it to
pick up.

4 Writing a Configuration (.cfg) File

As mentioned earlier, Player is a hardware abstraction layer which connects
your code to the robot’s hardware. It does this by acting as a Server/Client
type program where your code and the robot’s sensors are clients to a Player
server which then passes the data and instructions around to where it all needs
to go. This stuff will be properly explained in section 5, it all sounds more
complicated than it is because Player/Stage takes care of all the difficult stuff.
The configuration file is needed in order to tell the Player server which drivers
to use and which interfaces the drivers will be using.

For each model in the simulation or device on the robot that you want
to interact with, you will need to specify a driver. This is far easier than
writing worldfile information, and follows the same general syntax. The driver
specification is in the form:

driver
(

name "driver_name"
provides [device_address]
# other parameters...

)

The name and provides parameters are mandatory information, without them
Player won’t know which driver to use (given by name) and what kind of in-
formation is coming from the driver (provides). The name parameter is not

31



arbitrary, it must be the name of one of Player’s inbuilt drivers17 that have been
written for Player to interact with a robot device. A list of supported driver
names is in the Player Manual18, although when using Stage the only one that
is needed is "stage".

The provides parameter is a little more complicated than name. It is here
that you tell Player what interface to use in order to interpret information given
out by the driver (often this is sensor information from a robot), any information
that a driver provides can be used by your code. For a Stage simulated robot
the "stage" driver can provide the interfaces to the sensors discussed in section
3.2.1. Each interface shares the same name as the sensor model, so for example
a ranger model would use the ranger interface to interact with Player and
so on (the only exception to this being the position model which uses the
position2d interface). The Player manual contains a list of all the different
interfaces that can be used19, the most useful ones have already been mentioned
in section 3.2.1, although there are others too numerable to list here.

The input to the provides parameter is a “device address”, which specifies
which TCP port an interface to a robot device can be found, section 4.1 has more
information about device addresses. This uses the key:host:robot:interface:index
form separated by white space.

provides ["key:host:robot:interface:index"
"key:host:robot:interface:index"
"key:host:robot:interface:index"
...]

After the two mandatory parameters, the next most useful driver parameter
is model. This is only used if "stage" is the driver, it tells Player which partic-
ular model in the worldfile is providing the interfaces for this particular driver.
A different driver is needed for each model that you want to use. Models that
aren’t required to do anything (such as a map, or in the example of section 3.3
oranges and boxes) don’t need to have a driver written for them.
The remaining driver parameters are requires and plugin. The requires is
used for drivers that need input information such as "vfh", it tells this driver
where to find this information and which interface it uses. The requires pa-
rameter uses the same key:host:robot:interface:index syntax as the provides
parameter. Finally the plugin parameter is used to tell Player where to find
all the information about the driver being used. Earlier we made a .cfg file in
order to create a simulation of an empty (or at least unmoving) world, the .cfg
file read as follows:

driver
(

name "stage"
plugin "libstageplugin"

provides ["simulation:0" ]

17It is also possible to build your own drivers for a hardware device but this document won’t
go into how to do this because it’s not relevant to Player/Stage.

18http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group drivers.html
19http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group interfaces.html

32



# load the named file into the simulator
worldfile "empty.world"

)

This has to be done at the beginning of the configuration file because it tells
Player that there is a driver called "stage" that we’re going to use and the code
for dealing with this driver can be found in the libstageplugin plugin. This
needs to be specified for Stage because Stage is an add-on for Player, for drivers
that are built into Player by default the plugin doesn’t need to be specified.

4.1 Device Addresses - key:host:robot:interface:index

A device address is used to tell Player where the driver you are making will
present (or receive) information and which interface to use in order to read this
information. This is a string in the form key:host:robot:interface:index
where each field is separated by a colon.

• key: The Player manual states that: “The purpose of the key field is to
allow a driver that supports multiple interfaces of the same type to map
those interfaces onto different devices”[1]. This is a driver level thing and
has a lot to do with the name of the driver that you are using, generally for
"stage" the key doesn’t need to be used. If you’re using Player without
Stage then there is a useful section about device address keys in the Player
manual20.

• host: This is the address of the host computer where the device is located.
With a robot it could be the IP address of the robot. The default host is
“localhost” which means the computer on which Player is running.

• robot: this is the TCP port through which Player should expect to receive
data from the interface usually a single robot and all its necessary inter-
faces are assigned to one port. The default port used is 6665, if there were
two robots in the simulation the ports could be 6665 and 6666 although
there’s no rule saying which number ports you can or can’t use.

• interface: The interface to use in order to interact with the data. There
is no default value for this option because it is a mandatory field.

• index: If a robot has multiple devices of the same type, for instance it has
2 cameras to give the robot depth perception, each device uses the same
interface but gives slightly different information. The index field allows
you to give a slightly different address to each device. So two cameras
could be camera:0 and camera:1. This is very different from the key
field because having a “driver that supports multiple interfaces of the
same type” is NOT the same as having multiple devices that use the same
interface. Again there is no default index, as this is a mandatory field in
the device address, but you should use 0 as the index if there is only one
of that kind of device.

If you want to use any of the default values it can just be left out of the device
address. So we could use the default host and robot port and specify (for exam-
ple) a laser interface just by doing "laser:0". However, if you want to specify

20http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group tutorial config.html#device key

33



fields at the beginning of the device address but not in the middle then the sepa-
rating colons should remain. For example if we had a host at "127.0.0.1" with
a laser interface then we would specify the address as "127.0.0.1::laser:0",
the robot field is empty but the colons around it are still there. You may notice
that the key field here was left off as before.

4.2 Putting the Configuration File Together

We have examined the commands necessary to build a driver for a model in the
worldfile, now it is just a case of putting them all together. To demonstrate this
process we will build a configuration file for the worldfile developed in section
3. In this world we want our code to be able to interact with the robot, so in
our configuration file we need to specify a driver for this robot.

driver
(

# parameters...
)

The inbuilt driver that Player/Stage uses for simulations is called "stage"
so the driver name is "stage".

driver
(

name "stage"
)

The Bigbob robot uses position, laser, blobfinder and ranger sensors.
These correspond to the position2d, laser, blobfinder and interfaces re-
spectively. The ranger sensor is a special case because the ranger interface has
not currently been implemented (for versions Stage 3.0.1 or earlier). To work
around this you’ll need to use the sonar interfaces instead (there is apparently
an IR interface which could be used instead of ranger, but it doesn’t seem to
work on either Stage 2 or Stage 3).

We want our code to be able to read from these sensors, so we need to
declare interfaces for them and tell Player where to find each device’s data, for
this we use the configuration file’s provides parameter. This requires that we
construct device addresses for each sensor; to remind ourselves, this is in the
key:host:robot:interface:index format. We aren’t using any fancy drivers, so we
don’t need to specify a key. We are running our robot in a simulation on the
same computer as our Player sever, so the host name is localhost which is
the default, so we also don’t need to specify a host. The robot is a TCP port
to receive robot information over, picking which port to use is pretty arbitrary
but what usually happens is that the first robot uses the default port 6665
and subsequent robots use 6666, 6667, 6668 etc. There is only one robot in our
simulation so we will use port 6665 for all our sensor information from this robot.
We only have one sensor of each type, so our devices don’t need separate indices.
What would happen if we did have several sensors of the same type (like say
two cameras) is that we put the first device at index 0 and subsequent devices
using the same interface have index 1, then 2, then 3 and so on.21 Finally we

21There are lots of ranger sensors in our model but when we created the robot’s sensors in
section 3.2.2 we put them all into the same ranger model. So as far as the configuration file

34



use interfaces appropriate to the sensors the robot has, so in our example these
are the position, laser, blobfinder interfaces and for our ranger devices we
will use sonar.

Putting all this together under the provides parameter gives us:

driver
(
name "stage"
provides ["6665:position2d:0"

"6665:sonar:0"
"6665:blobfinder:0"
"6665:laser:0" ]

)

The device addresses can be on the same line as each other or separate lines,
just so long as they’re separated by some form of white space.

The last thing to do on our driver is the model "model_name" parameter
which needs to be specified because we are using Player/Stage. This tells the
simulation software that anything you do with this driver will affect the model
"model_name" in the simulation. In the simulation we built we named our robot
model “bob1”, so our final driver for the robot will be:

driver
(

name "stage"
provides ["6665:position2d:0"

"6665:sonar:0"
"6665:blobfinder:0"
"6665:laser:0"]

model "bob1"
)

If our simulation had multiple Bigbob robots in, the configuration file drivers
would be very similar to one another. If we created a second robot in our
worldfile and called it “bob2” then the driver would be:

driver
(

name "stage"
provides ["6666:position2d:0"

"6666:sonar:0"
"6666:blobfinder:0"
"6666:laser:0"]

model "bob2"
)

Notice that the port number and model name are the only differences because
the robots have all the same sensors.

is concerned there is only one raging device using either the sonar or IR interface, because
all the separate ranger devices are lumped together into this one model. We don’t need to
declare each ranger on an index of its own.

35



A driver of this kind can be built for any model that is in the worldfile,
not just the robots. For instance a map driver can be made which uses the
map interface and will allow you to get size, origin and occupancy data about
the map. The only requirement is that if you want to do something to the
model with your code then you need to build a driver for it in the configuration
file. Finally when we put the bit which declares the stage driver (this part is
compulsory for any simulation configuration file) together with our drivers for
the robot we end up with our final configuration file:

driver
(

name "stage"
plugin "libstageplugin"

provides ["simulation:0" ]

# load the named file into the simulator
worldfile "worldfile_name.world"

)

driver
(

name "stage"
provides ["6665:position2d:0"

"6665:sonar:0"
"6665:blobfinder:0"
"6665:laser:0"]

model "bob1"
)

5 Getting Your Simulation To Run Your Code

To learn how to write code for Player or Player/Stage it helps to understand the
basic structure of how Player works. Player uses a Server/Client structure in
order to pass data and instructions between your code and the robot’s hardware.
Player is a server, and a hardware device22 on the robot is subscribed as a client
to the server via a thing called a proxy. The .cfg file associated with your robot
(or your simulation) takes care of telling the Player server which devices are
attached to it, so when we run the command player some_cfg.cfg this starts
up the Player server and connects all the necessary hardware devices to the
server. Figure 19 shows a basic block diagram of the structure of Player when
implemented on a robot. In Player/Stage the same command will start the
Player server and load up the worldfile in a simulation window, this runs on
your computer and allows your code to interact with the simulation rather than
hardware. Figure 20 shows a basic block diagram of the Player/Stage structure.
Your code must also subscribe to the Player server so that it can access these
proxies and hence control the robot. Player has functions and classes which will

22remember, a device is a piece of hardware that uses a driver which conforms to an interface.
See section 2.2

36



Figure 19: The server/client control structure of Player when used on a robot.
There may be several proxies connected to the server at any time.

do all this for you, but you still need to actually call these functions with your
code and know how to use them.

Player is compatable with C, C++ or Python code, however in this manual
we will only really be using C++ because it is the simplest to understand. The
process of writing Player code is mostly the same for each different language
though. The Player and Player proxy functions have different names for each
language, but work in more or less the same way, so even if you don’t plan on
using C++ or Stage this section will still contain helpful information.

Before beginning a project it is highly recommended that for any programs
other than basic examples you should always wrap your Player commands
around your own functions and classes so that all your code’s interactions with
Player are kept together the same file. This isn’t a requirement of Player, it’s
just good practice. For example, if you upgrade Player or if for some reason your
robot breaks and a certain function no longer works you only have to change
part of a file instead of searching through all your code for places where Player
functions have been used.

Finally, in order to compile your program you use the following commands
(in Linux):
g++ -o example0 `pkg-config --cflags playerc++` example0.cc `pkg-config
--libs playerc++`

That will compile a program to a file called example0 from the C++ code
file example0.cc. If you are coding in C instead then use the following com-
mand:
gcc -o example0 `pkg-config --cflags playerc` example0.c `pkg-config
--libs playerc`

5.1 Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player header file.
Assuming Player/Stage is installed correctly on your machine then this can be

37



Figure 20: The server/client control structure of Player/Stage when used as a
simulator. There may be several proxies connected to the server at any time.

done with the line #include <libplayerc++/playerc++.h> (if you’re using C
then type #include <libplayerc/playerc.h> instead).

Next we need to establish a Player Client, which will interact with the Player
server for you. To do this we use the line:

PlayerClient client_name(hostname, port);

What this line does is declare a new object which is a PlayerClient called
client_name which connects to the Player server at the given address. The
hostname and port is like that discussed in section 4.1. If your code is run-
ning on the same computer (or robot) as the Player server you wish to connect
to then the hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port is an optional parameter usually only needed for
simulations, it will be the same as the port you gave in the .cfg file. This is
only useful if your simulation has more than one robot in and you need your
code to connect to both robots. So if you gave your first robot port 6665 and
the second one 6666 (like in the example of section 4.2) then you would need
two PlayerClients, one connected to each robot, and you would do this with the
following code:

PlayerClient robot1("localhost", 6665);
PlayerClient robot2("localhost", 6666);

If you are only using one robot and in your .cfg file you said that it would
operate on port 6665 then the port parameter to the PlayerClient class is not
needed.
Once we have established a PlayerClient we should connect our code to the de-
vice proxies so that we can exchange information with them. Which proxies you
can connect your code to is dependent on what you have put in your configura-
tion file. For instance if your configuration file says your robot is connected to a
laser but not a camera you can connect to the laser device but not the camera,
even if the robot (or robot simulation) has a camera on it.

38



Proxies take the name of the interface which the drivers use to talk to Player.
Let’s take part of the Bigbob example configuration file from section 4.2:

driver
(
name "stage"
provides ["6665:position2d:0"

"6665:sonar:0"
"6665:blobfinder:0"
"6665:laser:0" ]

)

Here we’ve told the Player server that our “robot” has devices which use the
position2d, sonar, blobfinder and laser interfaces. In our code then, we should
connect to the position2d, sonar, blobfinder and laser proxies like so:

Position2dProxy positionProxy_name(&client_name,index);
SonarProxy sonarProxy_name(&client_name,index);
BlobfinderProxy blobProxy_name(&client_name,index);
LaserProxy laserProxy_name(&client_name,index);

A full list of which proxies Player supports can be found in the Player manual23,
they all follow the convention of being named after the interface they use. In
the above case xProxy_name is the name you want to give to the proxy object,
client_name is the name you gave the PlayerClient object earlier and index is
the index that the device was given in your configuration file (probably 0).

5.1.1 Setting Up Connections: an Example.

For an example of how to connect to the Player sever and device proxies we will
use the example configuration file developed in section 4.2. For convenience this
is reproduced below:

driver
(

name "stage"
plugin "libstageplugin"

provides ["simulation:0" ]

# load the named file into the simulator
worldfile "worldfile_name.world"

)

driver
(

name "stage"
provides ["6665:position2d:0"

"6665:sonar:0"
"6665:blobfinder:0"

23http://playerstage.sourceforge.net/doc/Player-2.1.0/player/classPlayerCc 1 1ClientProxy.html

39



"6665:laser:0"]
model "bob1"

)

To set up a PlayerClient and then connect to proxies on that server we can use
principles discussed in this section to develop the following code:

#include <stdio.h>
#include <libplayerc++/playerc++.h>

int main(int argc, char *argv[])
{

/*need to do this line in c++ only*/
using namespace PlayerCc;

PlayerClient robot("localhost");

Position2dProxy p2dProxy(&robot,0);
SonarProxy sonarProxy(&robot,0);
BlobfinderProxy blobProxy(&robot,0);
LaserProxy laserProxy(&robot,0);

//some control code
return 0;

}

5.2 Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the device it
connects to. This means that each proxy will have different commands depend-
ing on what it controls. In Player version 2.1.0 there are 38 different proxies
which you can choose to use, many of which are not applicable to Player/Stage.
This manual will not attempt to explain them all, a full list of avaliable proxies
and their functions is in the Player manual24, although the returns, parameters
and purpose of the proxy function is not always explained.
The following few proxies are probably the most useful to anyone using Player
or Player/Stage.

5.2.1 Position2dProxy

The Position2dProxy is the number one most useful proxy there is. It controls
the robot’s motors and keeps track of the robot’s odometry (where the robot
thinks it is based on how far its wheels have moved).

Get/SetSpeed The SetSpeed command is used to tell the robot’s motors
how fast to turn. There are two different SetSpeed commands that can be
called, one is for robots that can move in any direction and the other is for
robots with differential or car-like drives.

• SetSpeed(double XSpeed, double YSpeed, double YawSpeed)

24http://playerstage.sourceforge.net/doc/Player-2.1.0/player/classPlayerCc 1 1ClientProxy.html

40



Figure 21: A robot on a cartesian grid. This shows what directions the X and
Y speeds will cause the robot to move in. A positive yaw speed will turn the
robot in the direction of the + arrow, a negative yaw speed is the direction of
the - arrow.

• SetSpeed(double XSpeed, double YawSpeed)

• SetCarlike(double XSpeed, double DriveAngle)

Figure 21 shows which direction the x, y and yaw speeds are in relation to the
robot. The x speed is the rate at which the robot moves forward and the y
speed is the robot’s speed sideways, both are to be given in metres per second.
The y speed will only be useful if the robot you want to simulate or control is
a ball, since robots with wheels cannot move sideways. The yaw speed controls
how fast the robot is turning and is given in radians per second, Player has an
inbuilt global function called dtor() which converts a number in degrees into
a number in radians which could be useful when setting the yaw speed. If you
want to simulate or control a robot with a differential drive system then you’ll
need to convert left and right wheel speeds into a forward speed and a turning
speed before sending it to the proxy. For car-like drives there is the SetCarlike
which, again is the forward speed in m/s and the drive angle in radians.

The GetSpeed commands are essentially the reverse of the SetSpeed com-
mand. Instead of setting a speed they return the current speed relative to the
robot (so x is the forward speed, yaw is the turning speed and so on).

• GetXSpeed: forward speed (metres/sec).

• GetYSpeed: sideways (perpendicular) speed (metres/sec).

• GetYawSpeed: turning speed (radians/sec).

Get Pos This function interacts with the robot’s odometry. It allows you to
monitor where the robot thinks it is. Coordinate values are given relative to its
starting point, and yaws are relative to its starting yaw.

• GetXPos(): gives current x coordinate relative to its x starting position.

41



• GetYPos(): gives current y coordinate relative to its y starting position.

• GetYaw(): gives current yaw relative to its starting yaw.

In section 3.2.1, we specified whether it would record odometry by measur-
ing how much its wheels have turned, or whether the robot would have perfect
knowledge of its current coordinates (by default the robot does not record odom-
etry at all). If you set the robot to record odometry using its wheels then the
positions returned by these get commands will become increasingly inaccurate
as the simulation goes on. If you want to log your robots position as it moves
around, these functions along with the perfect odometry25 setting can be used.

SetMotorEnable() This function takes a boolean input, telling Player whether
to enable the motors or not. If the motors are disabled then the robot will not
move no matter what commands are given to it, if the motors are enabled then
the motors will always work, this is not so desirable if the robot is on a desk
or something and is likely to get damaged. Hence the motors being enabled is
optional. If you are using Player/Stage, then the motors will always be enabled
and this command doesn’t need to be run. However, if your code is ever likely
to be moved onto a real robot and the motors are not explicitly enabled in your
code, then you may end up spending a long time trying to work out why your
robot is not working.

5.2.2 SonarProxy

The sonar proxy can be used to receive the distance from the sonar to an obstacle
in metres. To do this you use the command:

• sonarProxy_name[sonar_number]

Where sonarProxy_name is the SonarProxy object and sonar_number is the
number of the ranger. In Player/Stage the sonar numbers come from the order
in which you described the ranger devices in the worldfile. In section 3.2.2 we
described the ranger sensors for the Bigbob robot like so:

define bigbobs_sonars ranger
(

# number of sonars
scount 4

# define the pose of each transducer [xpos ypos heading]
spose[0] [ 0.75 0.1875 0 ] #fr left tooth
spose[1] [ 0.75 -0.1875 0 ] #fr right tooth
spose[2] [ 0.25 0.5 30] # left corner
spose[3] [ 0.25 -0.5 -30] # right corner

)

In this example sonarProxy_name[0] gives us the distance from the left tooth
ranger to an obstacle, sonarProxy_name[1] gives the distance from the front
right tooth to an obstacle, and so on. If no obstacle is detected then the function
will return whatever the ranger’s maximum range is.

25See section 3.2.1 for how to give the robot perfect odometry.

42



Figure 22: How laser angles are referenced. In this diagram the laser is pointing
to the right along the dotted line, the angle θ is the angle of a laser scan point,
in this example θ is negative.

5.2.3 LaserProxy

A laser is a special case of ranger device, it makes regularly spaced range mea-
surements turning from a minimum angle to a maximum angle. Each measure-
ment, or scan point, is treated as being done with a separate ranger. Where
angles are given they are given with reference to the laser’s centre front (see
figure 22).

• GetCount: The number of laser scan points that the laser measures.

• laserProxy_name[laser_number] The range returned by the laser_numberth

scan point. Scan points are numbered from the minimum angle at index
0, to the maximum angle at index GetCount().

• GetBearing[laser_number]: This gets the angle of the laser scan point.

• GetRange[laser_number]: returns the range measured by the scan point
laser_number. This is the same as doing laserProxy_name[laser_number].

• MinLeft: Gives the minimum range returned by a scan point on the left
hand side of the laser.

• MinRight: Gives the minimum range returned by a scan point on the right
hand side of the laser.

5.2.4 RangerProxy

The RangerProxy is a proxy for more general ranging, it supports the sonar,
laser and IR proxies. It has the same function as the SonarProxy in that you can
use the code rangerProxy_name[ranger_number] to return the distance from
ranger ranger_number to an obstacle. It also has many of the same functions

43



Figure 23: A laser scanner. The minimum angle is the angle of the rightmost
laser scan, the maximum angle is the leftmost laser scan. θ is the scan resolution
of the laser, it is the angle between each laser scan, given in 0.01 degrees.

as the LaserProxy, such as a minimum angle and a maximum angle and a
scanning resolution, mostly these are for retrieving data about how the rangers
are arranged or what size the ranging devices are.

5.2.5 BlobfinderProxy

The blobfinder module analyses a camera image for areas of a desired colour
and returns an array of the structure playerc_blobfinder_blob_t, this is the
structure used to store blob data. First we will cover how to get this data from
the blobfinder proxy, then we will discuss the data stored in the structure.

• GetCount: Returns the number of blobs seen.

• blobProxy_name[blob_number]: This returns the blob structure data for
the blob with the index blob_number. Blobs are sorted by index in the
order that they appear in the image from left to right. This can also be
achieved with the BlobfinderProxy function GetBlob(blob_number).

Once we receive the blob structure from the proxy we can extract data we
need. The playerc_blobfinder_blob_t structure contains the following fields:

• color: The colour of the blob it detected. This is given as a hexadecimal
value.

• area: The area of the blob’s bounding box.

• x: The horizontal coordinate of the geometric centre of the blob’s bounding
box (see figure 24).

• y: The vertical coordinate of the geometric centre of the blob’s bounding
box (see figure 24).

• left: The horizontal coordinate of the left hand side of the blob’s bound-
ing box (see figure 24).

44



Figure 24: What the fields in playerc blobfinder blob t mean. The blob on
the left has a geometric centre at (x, y), the blob on the right has a bounding
box with the top left corner at (left, top) pixels, and a lower right coordinate
at (right, bottom) pixels. Coordinates are given with reference to the top left
corner of the image.

• right: The horizontal coordinate of the right hand side of the blob’s
bounding box (see figure 24).

• top: The vertical coordinate of the top side of the blob’s bounding box
(see figure 24).

• bottom: The vertical coordinate of the bottom side of the blob’s bounding
box (see figure 24).

5.2.6 GripperProxy

The GripperProxy allows you to control the gripper, once the gripper is holding
an item, the simulated robot will carry it around wherever it goes. Without a
gripper you can only jostle an item in the simulation and you would have to
manually tell the simulation what to do with an item. The GripperProxy can
also tell you if an item is between the gripper teeth because the gripper model
has inbuilt beams which can detect if they are broken.

• GetBeams: This command will tell you if there is an item inside the grip-
per. If it is a value above 0 then there is an item to grab.

• GetState: This will tell you whether the gripper is opened or closed. If
the command returns a 1 then the gripper is open, if it returns 2 then the
gripper is closed.

• Open: Tells the gripper to open. This will cause any items that were being
carried to be dropped.

45



• Close: Tells the gripper to close. This will cause it to pick up anything
between its teeth.

5.2.7 SimulationProxy

The simulation proxy allows your code to interact with and change aspects of
the simulation, such as an item’s pose or its colour.

Get/Set Property To change a property of an item in the simulation we use
the following function:
SetProperty(char *item_name, char *property, void *value, size_t value_len)

• item_name: this is the name that you gave to the object in the worldfile, it
could be any model that you have described in the worldfile. For example,
in section 3.2.2 in the worldfile we declared a Bigbob type robot which we
called “bob1” so the item_name for that object is “bob1”. Similarly in
section 3.3 we built some models of oranges and called the “orange1” to
“orange4” so the item name for one of these would be “orange1”. Anything
that is a model in your worldfile can be altered by this function, you just
need to have named it, no drivers need to be declared in the configuration
file for this to work either. We didn’t write drivers for the oranges but we
could still alter their properties this way.

• property: There are only certain properties about a model that you can
change. You specify which one you want with a string. Since the properties
you can change are fixed then these strings are predefined (see stage.hh):

– "_mp_color": The colour of the item.

– "_mp_watts": The number of watts the item needs.

– "_mp_mass": The mass of the item.

– "_mp_fiducial_return": sets whether the item is detectable to the
fiducial finder on a robot.

– "_mp_laser_return": sets whether the item is detectable to the laser
on a robot.

– "_mp_obstacle_return": sets whether the robot can collide with
the item.

– "_mp_ranger_return": sets whether the item is detectable to the
rangers on a robot.

– "_mp_gripper_return": sets whether the item can be gripped by a
gripper or jostled by the robot colliding with it.

• value: The value you want to assign to the property. For the return
parameters this can simply be a 0 or a 1, for the watts and mass it can be
a numerical value. For the colour of the item this is a uint32_t 8 digit
long hexadecimal number. The first 2 digits are the alpha value of the
colour, the second two are its red value, the next two are its green value
and the final two are the blue colour value. So red, for instance, would be
uint32 t red = 0xffff0000, green would be 0xff00ff00 and blue is 0xff0000ff.
A nice shade of yellow might be 0xffffcc11.

46



• value_len: is the size of the value you gave in bytes. This can easily be
found with the C or C++ sizeof() operator.

Similarly the following function can be used to get property information:
GetProperty(char *item_name, char *property, void *value, size_t value_len)
Instead of setting the given property of the item, this will write it to the memory
block pointed to by *value.

Get/Set Pose The item’s pose is a special case of the Get/SetProperty func-
tion, because it is likely that someone would want to move an item in the world
they created a special function to do it.
SetPose2d(char *item_name, double x, double y, double yaw)
In this case item_name is as with Get/SetProperty, but we can directly specify
its new coordinates and yaw (coordinates and yaws are given with reference to
the map’s origin).
GetPose2d(char *item_name, double &x, double &y, double &yaw)
This is like SetPose2d only this time it writes the coordinates and yaw to the
given addresses in memory.

5.2.8 General Useful Commands

Read() To make the proxies update with new sensor data we need to tell
the player server to update, we can do this using the PlayerClient object which
we used to connect to the server. All we have to do is run the command
playerClient_name.Read() every time the data needs updating (where player-
Client name is the name you gave the PlayerClient object). Until this command
is run, the proxies and any sensor information from them will be empty. The
devices on a typical robot are asynchronous and the devices in a Player/Stage
simulation are also asynchronous, so running the Read() command won’t always
update everything at the same time, so it may take several calls before some
large data structures (such as a camera image) gets updated.

GetGeom() Most of the proxies have a function called GetGeom or GetGeometry
or RequestGeometry, or words to that effect. What these functions do is tell the
proxy retrieve information about the device, usually its size and pose (relative
to the robot). The proxies don’t know this by default since this information
is specific to the robot or the Player/Stage robot model. If your code needs
to know this kind of information about a device then the proxy must run this
command first.

5.3 Using Proxies: A Case Study

To demonstrate how to write code to control a Player device or Player/Stage
simulation we will use the example robot “Bigbob” developed in sections 3.2
and 4 which collects oranges and juice cartons from a factory floor. In previous
sections we have developed the Stage model for this robot and its environment
and the configuration file to control it. Now we can begin to put everything
together to create a working simulation of this robot.

47



Figure 25: The state transitions that the Bigbob rubbish collecting robot will
follow.

5.3.1 The Control Architecture

To collect rubbish we have three basic behaviours:

• Wandering: to search for rubbish.

• Moving towards item: for when an item is spotted and the robot wants to
collect it

• Collecting item: for dealing with collecting items.

The robot will also avoid obstacles but once this is done it will switch back to
its previous behaviour. The control will follow the state transitions shown in
figure 25.

5.3.2 Beginning the Code

In section 5.1.1 we discussed how to connect to the Player server and proxies
attached to the server, and developed the following code:

#include <stdio.h>
#include <libplayerc++/playerc++.h>

int main(int argc, char *argv[])
{

/*need to do this line in c++ only*/
using namespace PlayerCc;

PlayerClient robot("localhost");

48



Position2dProxy p2dProxy(&robot,0);
SonarProxy sonarProxy(&robot,0);
BlobfinderProxy blobProxy(&robot,0);
LaserProxy laserProxy(&robot,0);

//some control code
return 0;

}

Using our knowledge of the proxies discussed in section 5.2 we can build con-
trolling code on top of this basic code. Firstly, it is good practice to enable the
motors and request the geometry for all the proxies. This means that the robot
will move and that if we need to know about the sensing devices the proxies will
have that information available.

//enable motors
p2dProxy.SetMotorEnable(1);

//request geometries
p2dProxy.RequestGeom();
sonarProxy.RequestGeom();
laserProxy.RequestGeom();
//blobfinder doesn’t have geometry

Once things are initialised we can enter the main control loop. At this point we
should tell the robot to read in data from its devices to the proxies.

while(true)
{

robot.Read();

//control code
}

5.3.3 Wander

first we will initialise a couple of variables which will be the forward speed and
the turning speed of the robot, we’ll put this with the proxy initialisations.

Position2dProxy p2dProxy(&robot,0);
SonarProxy sonarProxy(&robot,0);
BlobfinderProxy blobProxy(&robot,0);
LaserProxy laserProxy(&robot,0);

double forwardSpeed, turnSpeed;

Let’s say that Bigbob’s maximum speed is 1 metre/second and it can turn
90◦ a second. We will write a small subfunction to randomly assign forward and
turning speeds between 0 and the maximum speeds.

void Wander(double *forwardSpeed, double *turnSpeed)
{

int maxSpeed = 1;

49



int maxTurn = 90;
double fspeed, tspeed;

//fspeed is between 0 and 10
fspeed = rand()%11;
//(fspeed/10) is between 0 and 1
fspeed = (fspeed/10)*maxSpeed;

tspeed = rand()%(2*maxTurn);
tspeed = tspeed-maxTurn;
//tspeed is between -maxTurn and +maxTurn

*forwardSpeed = fspeed;
*turnSpeed = tspeed;

}

In the control loop we include a call to this function and then set the resulting
speeds to the motors.

while(true)
{

// read from the proxies
robot.Read();

//wander
Wander(&forwardSpeed, &turnSpeed);

//set motors
p2dProxy.SetSpeed(forwardSpeed, dtor(turnSpeed));

}

At present the motors are being updated every time this control loop ex-
ecutes, and this leads to some erratic behaviour from the robot. Using the
sleep()26 command we will tell the control loop to wait one second between
each execution. At this point we should also seed the random number generator
with the current time so that the wander behaviour isn’t exactly the same each
time. For the sleep command we will need to include unistd.h and to seed the
random number generator with the current system time we will need to include
time.h.

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <libplayerc++/playerc++.h>

void Wander(double *forwardSpeed, double *turnSpeed)
{

//wander code...
}

26sleep() is a standard C function and is included in the unistd.h header.

50



int main(int argc, char *argv[])
{

/*need to do this line in c++ only*/
using namespace PlayerCc;

//connect to proxies
double forwardSpeed, turnSpeed;

srand(time(NULL));

//enable motors
//request geometries

while(true)
{

// read from the proxies
robot.Read();

//wander
Wander(&forwardSpeed, &turnSpeed);

//set motors
p2dProxy.SetSpeed(forwardSpeed, dtor(turnSpeed));
sleep(1);

}
}

5.3.4 Obstacle Avoidance

Now we need to write a subfunction that checks the sonars for any obstacles
and amends the motor speeds accordingly.

void AvoidObstacles(double *forwardSpeed, double *turnSpeed, \
SonarProxy &sp)

{
//will avoid obstacles closer than 40cm
double avoidDistance = 0.4;
//will turn away at 60 degrees/sec
int avoidTurnSpeed = 60;

//left corner is sonar no. 2
//right corner is sonar no. 3
if(sp[2] < avoidDistance)
{

*forwardSpeed = 0;
//turn right
*turnSpeed = (-1)*avoidTurnSpeed;
return;

}
else if(sp[3] < avoidDistance)

51



{
*forwardSpeed = 0;
//turn left
*turnSpeed = avoidTurnSpeed;
return;

}
else if( (sp[0] < avoidDistance) && \

(sp[1] < avoidDistance))
{

//back off a little bit
*forwardSpeed = -0.2;
*turnSpeed = avoidTurnSpeed;
return;

}

return; //do nothing
}

This is a very basic obstacle avoidance subfunction will update the motor speeds
only if there is an obstacle to avoid. If we call this function just before sending
data to the motors then it will overwrite any other behaviours so that the
obstacle will be avoided. Once the obstacle is no longer in the way then the
robot will continue as it was, this will allow us to transition from any behaviour
into obstacle avoidance and then back again, as per the requirement of our
control structure. All we need to do now is call this function in our control
loop:

while(true)
{

// read from the proxies
robot.Read();

//wander
Wander(&forwardSpeed, &turnSpeed);

//avoid obstacles
AvoidObstacles(&forwardSpeed, &turnSpeed, sonarProxy);

//set motors
p2dProxy.SetSpeed(forwardSpeed, dtor(turnSpeed));
sleep(1);

}

5.3.5 Move To Item

For this state we want the robot to move towards a blob that it has spotted.
There may be several blobs in its view at once, so we’ll tell the robot to move
to the largest one because it’s probably the closest to the robot. The following
subfunction finds the largest blob and turns the robot so that the blob’s centre
is near the centre of the image. The robot will then move towards the blob.

52



void MoveToItem(double *forwardSpeed, double *turnSpeed, \
BlobfinderProxy &bfp)

{
int i, centre;
int noBlobs = bfp.GetCount();
playerc_blobfinder_blob_t blob;
int turningSpeed = 10;

/*number of pixels away from the image centre a blob
can be to be in front of the robot*/
int margin = 10;

int biggestBlobArea = 0;
int biggestBlob = 0;

//find the largest blob
for(i=0; i<noBlobs; i++)
{

//get blob from proxy
playerc_blobfinder_blob_t currBlob = bfp[i];

if(currBlob.area > biggestBlobArea)
{

biggestBlob = i;
biggestBlobArea = currBlob.area;

}
}
blob = bfp[biggestBlob];

// find centre of image
centre = bfp.GetWidth()/2;

//adjust turn to centre the blob in image
/*if the blob’s centre is within some margin of the image
centre then move forwards, otherwise turn so that it is
centred. */
//blob to the left of centre
if(blob.x < centre-margin)
{

*forwardSpeed = 0;
//turn left
*turnSpeed = turningSpeed;

}
//blob to the right of centre
else if(blob.x > centre+margin)
{

*forwardSpeed = 0;
//turn right
*turnSpeed = -turningSpeed;

}

53



//otherwise go straight ahead
else
{

*forwardSpeed = 0.5;
*turnSpeed = 0;

}

return;
}

We want the robot to transition to this state whenever an item is seen, so
we put a conditional statement in our control loop like so:

if(blobProxy.GetCount() == 0)
{

//wander
Wander(&forwardSpeed, &turnSpeed);

}
else
{

//move towards the item
MoveToItem(&forwardSpeed, &turnSpeed, blobProxy);

}

5.3.6 Collect Item

This behaviour will be the most difficult to code because Stage doesn’t support
pushable objects (the required physics is far too complex), what happens instead
is that the robot runs over the object and just jostles it a bit. As a work-around
to this problem we will have to somehow find out which item is between Bigbob’s
teeth so that we can find its “name” and then change that item’s pose (for which
we need the item’s name) so that it is no longer in the simulation. In essence,
instead of having our robot eat rubbish and store it within its body, what we
are doing is making the laser zap the rubbish out of existence.

We can find the name of an item between Bigbob’s teeth by cross referencing
the robot’s pose with the locations of the items in the world to find out which
item is nearest the robot’s laser. The first step is to create a list of all the
items in the world, their names and their poses at initialisation. Since we
know the names of the items are “orange1” to “orange4” and “carton1” to
“carton4”, we can find their poses with a simple call to a simulation proxy.
We’ll have to connect to the simulation proxy with our code first using the line
SimulationProxy simProxy(&robot,0);, then we can access this information
and put it into a struct.

struct Item
{

char name[16];
double x;
double y;

}typedef item_t;

We can populate the structure with information using the following code:

54



item_t itemList[8];

void RefreshItemList(item_t *itemList, SimulationProxy &simProxy)
{

int i;

//get the poses of the oranges
for(i=0;i<4;i++)
{

char orangeStr[] = "orange%d";
sprintf(itemList[i].name, orangeStr, i+1);
double dummy; //dummy variable, don’t need yaws.
simProxy.GetPose2d(itemList[i].name, \

itemList[i].x, itemList[i].y, dummy);
}

//get the poses of the cartons
for(i=4;i<8;i++)
{

char cartonStr[] = "carton%d";
sprintf(itemList[i].name, cartonStr, i-3);
double dummy; //dummy variable, don’t need yaws.
simProxy.GetPose2d(itemList[i].name, \

itemList[i].x, itemList[i].y, dummy);
}

return;
}

Where itemList is an item_t array of length 8.
Next we can begin the “Collect Item” behaviour, which will be triggered by

something breaking the laser beam. When this happens we will check the area
around Bigbob’s teeth, as indicated by figure 26. We know the distance from
the centre of this search circle to Bigbob’s origin (0.625m) and the radius of
the search circle (0.375m), we can get the robot’s exact pose with the following
code.

double x, y, yaw;
simProxy.GetPose2d("bob1", x, y, yaw);

Cross referencing the robot’s position with the item positions is a matter of
trigonometry, we won’t reproduce the code here, but the full and final code
developed for the Bigbob rubbish collecting robot is included in appendix D.
The method we used is to find the Euclidian distance of the items to the circle
centre, and the smallest distance is the item we want to destroy. We made a
subfunction called FindItem that returns the index of the item to be destroyed.

Now that we can find the item to destroy it’s fairly simple to trigger our
subfunction when the laser is broken so we can find and destroy an item.

if(laserProxy[90] < 0.25)
{

55



Figure 26: Where to look for items which may have passed through Bigbob’s
laser.

int destroyThis;

/*first param is the list of items in the world
second is length of this list
third parameter is the simulation proxy with
the pose information in it*/
destroyThis = FindItem(itemList, 8, simProxy);

//move it out of the simulation
simProxy.SetPose2d(itemList[destroyThis].name, -10, -10, 0);
RefreshItemList(itemList, simProxy);

}

The laser has 180 points, so point number 90 is the one which is perpendicular
to Bigbob’s teeth. This point returns a maximum of 0.25, so if its range was
to fall below this then something has passed through the laser beam. We then
find the item closest to the robot’s teeth and move that item to coordinate
(−10,−10) so it is no longer visible or accessible.
Finally we have a working simulation of a rubbish collecting robot! The full
code listing is included in appendix D, the simulation world and configuration
files are in appendices B and C respectively.

5.4 Simulating Multiple Robots

Our robot simulation case study only shows how to simulate a single robot in
a Player/Stage environment. It’s highly likely that a simulation might want
more than one robot in it. In this situation you will need to build a model
of every robot you need in the worldfile, and then its associated driver in the
configuration file. Let’s take a look at our worldfile for the case study, we’ll add

56



a new model of a new Bigbob robot called “bob2”:

bigbob
(
name "bob1"
pose [-5 -6 45]
color "green"
)

bigbob
(
name "bob2"
pose [5 6 225]
color "yellow"
)

If there are multiple robots in the simulation, the standard practice is to put each
robot on its own port (see section 4.1). To implement this in the configuration
file we need to tell Player which port to find our second robot on:

driver( name "stage"
provides ["6665:position2d:0" "6665:sonar:0"
"6665:blobfinder:0" "6665:laser:0"]
model "bob1" )

driver( name "stage"
provides ["6666:position2d:0" "6666:sonar:0"
"6666:blobfinder:0" "6666:laser:0"]
model "bob2" )

If you plan on simulating a large number of robots then it is probably worth
writing a script to generate the world and configuration files.

When Player/Stage is started, the Player server automatically connects to
all the used ports in your simulation and you control the robots separately with
different PlayerClient objects in your code. For instance:

//first robot
PlayerClient robot1("localhost", 6665);
Position2dProxy p2dprox1(&robot1,0);
SonarProxy sprox1(&robot1,0);

//second robot
PlayerClient robot2("localhost", 6666);
Position2dProxy p2dprox2(&robot2,0);
SonarProxy sprox2(&robot2,0);

Each Player Client represents a robot, this is why when you connect to a proxy
the PlayerClient is a constructor parameter. Each robot has a proxy for each of
its devices, no robots share a proxy, so it is important that your code connects
to every proxy of every robot in order to read the sensor information. How
you handle the extra PlayerClients and proxies is dependent on the scale of the
simulation and your own personal coding preferences. It’s a good idea, if there’s

57



more than maybe 2 robots in the simulation, to make a robot class which deals
with connecting to proxies and the server, and processes all the information
internally to control the robot. Then you can create an instance of this class
for each simulated robot27 and all the simulated robots will run the same code.

An alternative to using a port for each robot is to use the same port but a
different index. This will only work if the robots are all the same (or at least
use the same interfaces, although different robots could be run on a different
ports) and the robots only use one index for each of its devices. For example,
the Bigbob robot uses interfaces and indexes: position2d:0, sonar:0, blobfinder:0
and laser:0 so it never uses more than one index. If we configured two Bigbob
robots to use the same port but a different index our configuration file would
be like this:

driver( name "stage"
provides ["6665:position2d:0" "6665:sonar:0"
"6665:blobfinder:0" "6665:laser:0"]
model "bob1" )

driver( name "stage"
provides ["6665:position2d:1" "6665:sonar:1"
"6665:blobfinder:1" "6665:laser:1"]
model "bob2" )

In our code we could then establish the proxies using only one PlayerClient:

PlayerClient robot("localhost", 6665);

//first robot
Position2dProxy p2dprox1(&robot,0);
SonarProxy sprox1(&robot,0);

//second robot
Position2dProxy p2dprox2(&robot,1);
SonarProxy sprox2(&robot,1);

//shared Simultion proxy...
SimulationProxy sim(&robot,0);

The main advantage of configuring the robot swarm this way is that it allows
us to only have one simulation proxy which is shared by all robots. This is good
since there is only ever one simulation window that you can interact with and
so multiple simulation proxies are unnecessary.

6 Useful Links

• Player 2.1.0 Manual
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/

27obviously the robot’s port number would need to be a parameter otherwise they’ll all
connect to the same port and consequently the same robot.

58



• Stage 3.0.1 Manual
http://playerstage.sourceforge.net/doc/stage-3.0.1/

• Stage 2.0.0 Manual
http://playerstage.sourceforge.net/doc/Stage-2.0.0/

• All Player Proxies in C
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group_
_playerc__proxies.html

• All Player Proxies in C++
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/namespacePlayerCc.
html

• Interfaces used by Player
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/group_
_interfaces.html

References

[1] Brian Gerkey, Richard Vaughan, and Andrew Howard. Player manual: De-
vice addresses. http://playerstage.sourceforge.net/doc/Player-2.1.
0/player/group__tutorial__config.html#device_addresses.

7 Appendices

Appendix A. General Stage Model of Bigbob

# bigbob.inc
# model for the robot "Bigbob"
# Author: Jennifer Owen

#Bigbob’s sonars
define bigbobs_sonars ranger
(

# number of sonars
scount 4

# define the pose of each transducer [xpos ypos heading]
spose[0] [ 0.75 0.1875 0 ] #fr left tooth
spose[1] [ 0.75 -0.1875 0 ] #fr right tooth
spose[2] [ 0.25 0.5 30] # left corner
spose[3] [ 0.25 -0.5 -30] # right corner

# define the field of view of each transducer
#[range_min range_max view_angle]
sview [0.3 2.0 10]

# define the size of each transducer
# [xsize ysize] in meters

59



ssize [0.01 0.05]
)

# bigbob’s blobfinder
define bigbobs_eyes ptz
(

blobfinder
(

# number of colours to look for
channels_count 2

# which colours to look for
channels ["orange" "DarkBlue"]

# camera parameters
image [160 120] #resolution
range_max 5.00
ptz [0 0 60]

)
)

# bigbob’s laser
define bigbobs_laser laser
(

range_min 0.0

# distance between teeth in metres
range_max 0.25

# does not need to be big
fov 20

pose [0.625 0.125 270]
size [0.025 0.025]

)

# bigbob’s body
define bigbob position
(

# actual size
size [1.25 1 1]

# Bigbob’s centre of rotation is offset from its centre of area
origin [0.125 0 0]

# estimated mass in KG
mass 15.0

# the shape of Bigbob

60



polygons 3
polygon[0].points 6
polygon[0].point[0] [0 0]
polygon[0].point[1] [0 1]
polygon[0].point[2] [0.75 1]
polygon[0].point[3] [1 0.75]
polygon[0].point[4] [1 0.25]
polygon[0].point[5] [0.75 0]

polygon[1].points 4
polygon[1].point[0] [1 0.75]
polygon[1].point[1] [1.25 0.75]
polygon[1].point[2] [1.25 0.625]
polygon[1].point[3] [1 0.625]

polygon[2].points 4
polygon[2].point[0] [1 0.375]
polygon[2].point[1] [1.25 0.375]
polygon[2].point[2] [1.25 0.25]
polygon[2].point[3] [1 0.25]

# differential steering model
drive "diff"

# sensors attached to bigbob
bigbobs_sonars()
bigbobs_eyes()
bigbobs_laser()

)

Appendix B. Worldfile, Containing Robot and Items in
World

# populated world for Bigbob robot
# Author: Jennifer Owen

include "map.inc"
include "bigbob.inc"

# size of the whole simulation
size [15 15]

# configure the GUI window
window
(
size [ 700.000 700.000 ]
scale 0.025

61



)

# load an environment bitmap
map
(
bitmap "bitmaps/cave.png"
size [15 15]

)

bigbob
(
name "bob1"
pose [-5 -6 45]
color "green"
)

define orange model
(
# this is a picture of a black circle
bitmap "bitmaps/circle.png"
size [0.15 0.15]
color "orange"

gui_outline 0
gripper_return 1
)

define carton model
(
# a carton is retangular
# so make a square shape and use size[]
polygons 1
polygon[0].points 4
polygon[0].point[0] [0 0]
polygon[0].point[1] [0 1]
polygon[0].point[2] [1 1]
polygon[0].point[3] [1 0]

# average litre carton size is ~ 20cm x 10cm x 5cm
size [0.1 0.2]

color "DarkBlue"
gripper_return 1
)

orange(name "orange1" pose [-1 -5 0])
orange(name "orange2" pose [-2 -5 0])
orange(name "orange3" pose [-3 -5 0])

62



orange(name "orange4" pose [-4 -5 0])

carton(name "carton1" pose [-2 -4 0])
carton(name "carton2" pose [-2 -3 0])
carton(name "carton3" pose [-2 -2 0])
carton(name "carton4" pose [-2 -1 0])

Appendix C. Configuration file for Bigbob World

# Desc: Player sample configuration file for controlling Stage devices
# Author: Jennifer Owen
# Date: 22/05/2009

driver
(
name "stage"
plugin "libstageplugin"

provides ["simulation:0"]

# load the named file into the simulator
worldfile "robots_and_junk.world"

)

# the main bob1 robot
driver
(

name "stage"
provides [

"6665:position2d:0"
"6665:sonar:0"
"6665:blobfinder:0"
"6665:laser:0"
]

model "bob1"
)

Appendix D. Controlling Code for Bigbob Robot Simula-
tion

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <libplayerc++/playerc++.h>

63



struct Item
{

char name[16];
double x;
double y;

}typedef item_t;

using namespace PlayerCc;

/**
Randomly assigns new speeds into the given addresses.
This function will always write to the given addresses.
@param *forwardSpeed the address of the forward speed
variable you want this function to change.
@param *turnSpeed the address of the turn speed variable
you want this function to change.
*/
void Wander(double *forwardSpeed, double *turnSpeed)
{

int maxSpeed = 1;
int maxTurn = 90;
double fspeed, tspeed;

//fspeed is between 0 and 10
fspeed = rand()%11;
//(fspeed/10) is between 0 and 1
fspeed = (fspeed/10)*maxSpeed;

tspeed = rand()%(2*maxTurn);
tspeed = tspeed-maxTurn;

*forwardSpeed = fspeed;
*turnSpeed = tspeed;

}

/**
Checks sonars for obstacles and updates the given addresses
with wheel speeds. This function will write to the addresses
only if there is an obstacle present. Very basic obstacle avoidance only.
@param *forwardSpeed the address of the forward speed variable
you want this function to change.
@param *turnSpeed the address of the turn speed variable you
want this function to change.
@param &sp The sonar proxy that you want this function to monitor.
*/
void AvoidObstacles(double *forwardSpeed, double *turnSpeed, \

SonarProxy &sp)

64



{
//will avoid obstacles closer than 40cm
double avoidDistance = 0.4;
//will turn away at 60 degrees/sec
int avoidTurnSpeed = 60;

//left corner is sonar no. 2
//right corner is sonar no. 3
if(sp[2] < avoidDistance)
{

*forwardSpeed = 0;
//turn right
*turnSpeed = (-1)*avoidTurnSpeed;
printf("avoiding obstacle\n");
return;

}
else if(sp[3] < avoidDistance)
{

*forwardSpeed = 0;
//turn left
*turnSpeed = avoidTurnSpeed;
printf("avoiding obstacle\n");
return;

}
else if( (sp[0] < avoidDistance) && \

(sp[1] < avoidDistance))
{

//back off a little bit
*forwardSpeed = -0.2;
*turnSpeed = avoidTurnSpeed;
printf("avoiding obstacle\n");
return;

}

return; //do nothing
}

/**
If blobs have been detected this function will turn the robot
towards the largest blob. This will be the closest blob (hopefully!).
If called this function will always overwrite information in the
given addresses.
@param *forwardSpeed the address of the forward speed variable
you want this function to change.
@param *turnSpeed the address of the turn speed variable you
want this function to change.
@param &bfp The blobfinder proxy that you want this function
to monitor.
*/

65



void MoveToItem(double *forwardSpeed, double *turnSpeed, \
BlobfinderProxy &bfp)

{
int i, centre;
int noBlobs = bfp.GetCount();
playerc_blobfinder_blob_t blob;
int turningSpeed = 10;

/*number of pixels away from the image centre a blob
can be to be in front of the robot*/
int margin = 10;

int biggestBlobArea = 0;
int biggestBlob = 0;

//find the largest blob
for(i=0; i<noBlobs; i++)
{

//get blob from proxy
playerc_blobfinder_blob_t currBlob = bfp[i];

if(currBlob.area > biggestBlobArea)
{

biggestBlob = i;
biggestBlobArea = currBlob.area;

}
}
blob = bfp[biggestBlob];

// find centre of image
centre = bfp.GetWidth()/2;

//adjust turn to centre the blob in image
/*if the blob’s centre is within some margin of the image
centre then move forwards, otherwise turn so that it is
centred. */
//blob to the left of centre
if(blob.x < centre-margin)
{

*forwardSpeed = 0;
//turn left
*turnSpeed = turningSpeed;

}
//blob to the right of centre
else if(blob.x > centre+margin)
{

*forwardSpeed = 0;
//turn right
*turnSpeed = -turningSpeed;

}

66



//otherwise go straight ahead
else
{

*forwardSpeed = 0.5;
*turnSpeed = 0;

}

return;
}

/**
Fills the item list array with the names and positions of items
in the simulation
@param itemList this is the item list which contains the names
and positions of all the items in the simulation.
@param simProxy the simulation proxy for the Player/Stage simulation.
*/
void RefreshItemList(item_t *itemList, SimulationProxy &simProxy)
{

int i;

//get the poses of the oranges
for(i=0;i<4;i++)
{

char orangeStr[] = "orange%d";
sprintf(itemList[i].name, orangeStr, i+1);
double dummy; //dummy variable, don’t need yaws.
simProxy.GetPose2d(itemList[i].name, \

itemList[i].x, itemList[i].y, dummy);
}

//get the poses of the cartons
for(i=4;i<8;i++)
{

char cartonStr[] = "carton%d";
sprintf(itemList[i].name, cartonStr, i-3);
double dummy; //dummy variable, don’t need yaws.
simProxy.GetPose2d(itemList[i].name, \

itemList[i].x, itemList[i].y, dummy);
}

return;
}

67



/**
Finds an item in the simulation which is near the robot’s teeth.
@param itemList this is the item list which contains the names and
positions of all the items in the simulation.
@param listLength The number of items in the simulation
@param sim the simulation proxy for the Player/Stage simulation.
@return returns the index of the item in the array which is within
the robot’s teeth. If no item is found then this will return -1.
*/
int FindItem(item_t *itemList, int listLength, SimulationProxy &sim)
{

double radius = 0.375;
double distBotToCircle = 0.625;
double robotX, robotY, robotYaw;
double circleX, circleY;

//find the robot...
sim.GetPose2d((char*)"bob1", robotX, robotY, robotYaw);

/*now we find the centre of the search circle.
this is distBotToCircle metres from the robot’s origin
along its yaw*/

/*horizontal offset from robot origin*/
circleX = distBotToCircle*cos(robotYaw);

/*vertical offset from robot origin*/
circleY = distBotToCircle*sin(robotYaw);

//find actual centre relative to simulation.
circleX = robotX + circleX;
circleY = robotY + circleY;

/* to find which items are within this circle we
find their Euclidian distance to the circle centre.
Find the closest one and if it’s distance is smaller than
the circle radius then return its index */

double smallestDist = 1000000;
int closestItem = 0;
int i;

for(i=0; i<listLength; i++)
{

double x, y, dist;
x = circleX - itemList[i].x;
y = circleY - itemList[i].y;

//find euclidian distance

68



dist = (x*x) + (y*y);
dist = sqrt(dist);

if(dist < smallestDist)
{

smallestDist = dist;
closestItem = i;

}
}

return closestItem;
}

int main(int argc, char *argv[])
{

/*need to do this line in c++ only*/
using namespace PlayerCc;

PlayerClient robot("localhost", 6665);

Position2dProxy p2dProxy(&robot,0);
SonarProxy sonarProxy(&robot,0);
BlobfinderProxy blobProxy(&robot,0);
LaserProxy laserProxy(&robot,0);
SimulationProxy simProxy(&robot,0);

double forwardSpeed, turnSpeed;
item_t itemList[8];

RefreshItemList(itemList, simProxy);

srand(time(NULL));

//enable motors
p2dProxy.SetMotorEnable(1);

//request geometries
p2dProxy.RequestGeom();
sonarProxy.RequestGeom();
laserProxy.RequestGeom();
//blobfinder doesn’t have geometry

/*here so that laserProxy[90] doesn’t segfault on first loop*/
robot.Read();

while(true)
{

// read from the proxies

69



robot.Read();

if(blobProxy.GetCount() == 0)
{

//wander
printf("wandering\n");
Wander(&forwardSpeed, &turnSpeed);

}
else
{

//move towards the item
printf("moving to item\n");
MoveToItem(&forwardSpeed, &turnSpeed, blobProxy);

}

if(laserProxy[90] < 0.25)
{

int destroyThis;

destroyThis = FindItem(itemList, 8, simProxy);
//move it out of the simulation
printf("collecting item\n");
simProxy.SetPose2d(itemList[destroyThis].name, -10, -10, 0);
RefreshItemList(itemList, simProxy);

}
//avoid obstacles
AvoidObstacles(&forwardSpeed, &turnSpeed, sonarProxy);

//set motors
p2dProxy.SetSpeed(forwardSpeed, dtor(turnSpeed));
sleep(1);

}
}

70


