Player/Stage project

USC Robotics Research Laboratory
University of Southern California
Los Angeles, California, USA

Gazebo

Version 0.4.0 User Manual

Andrew Howard
ahoward@usc.edu

Nathan Koenig
nkoenig@usc.edu

May 31, 2004

Contents

1 Introduction

1.1 WhatisGazebo?
1.2 Stageand Gazebo
1.3 GettingGazebo
1.4 System Requirements
15 Bugs.................
16 License
1.7 Acknowledgments

| User Guide

2 General Usage
2.1 Installing Third-Party Dependencies

2.2 Building and Installing Gazebo . . .
2.3 StartingGazebo
2.4 Working with Player
2.5 Command Line Options

3 The World File

3.1 Key Concepts and Basic Syntax . .
3.2 Graphical User Interface
3.3 Canonical World File Layout
3.4 Coordinate Systems and Units . . .

4 Working with Player

4.1 Setting up the Simulation
4.2 Example: Using a Single Robot . .

4.3 Example: Using a Single Robot with the VFH driver

4.4 Example: Using Multiple Robots . .

4.5 Example: Using Multiple Robots with --gazebo-prefix.

5 Non-model Reference

5.1 Global Paramamerters

6 Model Reference 17

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

AvatarHeld 19
B.1.1 OVerVIEW 19
6.1.2 libgazebolinterfaces e 19
6.1.3 Player Drivers e 19
6.1.4 World File Attributes e 19
6.1.5 Body Attributes L e 19
BIIMD . . . e 20
6.2.1 OVEIVIEW 20
6.2.2 libgazebolinterfaces e 20
6.2.3 Player Drivers e e 20
6.2.4 World File Attributes 20
6.25 Body Attributes e 20
ClodBuster 21
6.3.1 OVerVIeW 21
6.3.2 libgazebolinterfaces 21
6.3.3 Player Drivers e e 21
6.3.4 World File Attributes 21
6.3.5 Body Attributes e 21
Factory e 22
6.4.1 OVerVIEW 22
6.4.2 libgazebolinterfaces e 22
6.4.3 Player Drivers e 22
6.4.4 World File Attributes e 22
6.4.5 Body Attributes L e 22
GarminGPS 23
6.5.1 OVerVIEW 23
6.5.2 libgazebolinterfaces 23
6.5.3 Player Drivers e 23
6.5.4 World File Attributes 23
6.5.5 Body Attributes L 23
GroundPlane 24
6.6.1 OVerview 24
6.6.2 libgazebolinterfaces 24
6.6.3 Player Drivers e e 24
6.6.4 World File Attributes 24
6.6.5 Body Attributes e 24
LightSource e 25
6.7.1 OVervVIeW 25
6.7.2 libgazebolinterfaces e 25
6.7.3 Player Drivers e 25
6.7.4 World File Attributes 25
6.75 Body Attributes e 25
MapEXtruder e e 26
6.8.1 OVerVIEW 26
6.8.2 libgazebolinterfaces e 26
6.8.3 Player Drivers e e 26

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.8.4 World File Attributes e 26

6.8.5 Body Attributes e 26
ObserverCam. 27
6.9.1 OVerview 27
6.9.2 World File Attributes 27
6.9.3 WIndows e 27
6.9.4 Body Attributes L e 28
PIoneer2AT 29
6.10.1 OVEIVIEW 29
6.10.2 libgazebolinterfaces 29
6.10.3 Player Drivers e e 29
6.10.4 World File Attributes 29
6.10.5 Body Attributes e 29
PIoneer2DX 30
6.11.1 OVerVIeW 30
6.11.2 libgazebolinterfaces 30
6.11.3 Player Drivers e 30
6.11.4 World File Attributes 30
6.11.5 Body Attributes e 30
PIONEer2Gripper e e 31
6.12.1 OVerVIeW 31
6.12.2 libgazebolinterfaces e 31
6.12.3 Player Drivers e 31
6.12.4 World File Attributes e 31
6.12.5 Body Attributes L e 31
Pioneer2Sonars 32
6.13.1 OVEIVIEW 32
6.13.2 libgazebolinterfaces e 32
6.13.3 Player Drivers e 32
6.13.4 World File Attributes e 32
6.13.5 Body Attributes L 32
PointSet 33
6.14.1 OVerVIEW 33
6.14.2 libgazebolinterfaces 33
6.14.3 Player Drivers e e 33
6.14.4 World File Attributes 33
6.14.5 Body Attributes L e 33
SegwayRMP . . . e 34
6.15.1 OVerview 34
6.15.2 libgazebolinterfaces 34
6.15.3 Player Drivers e e 34
6.15.4 World File Attributes 34
6.15.5 Body Attributes 34
Shrimp . . . e 35
6.16.1 OVEIVIEW 35
6.16.2 libgazebolinterfaces 35
6.16.3 Player Drivers e 35

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.16.4 World File Attributes e 35

6.16.5 Body Attributes 35
SICKLMS200 36
6.17.1 OVerVIeW 36
6.17.2 libgazebolinterfaces 36
6.17.3 Player Drivers e e 36
6.17.4 World File Attributes 36
6.17.5 Body Attributes e 36
SimpleSoliad. e 37
6.18.1 OVerview 37
6.18.2 libgazebolinterfaces e 37
6.18.3 Player Drivers e 37
6.18.4 World File Attributes 37
6.18.5 Body Attributes 37
SonyVID30 e e 38
6.19.1 OVErVIEW 38
6.19.2 libgazebolinterfaces e 38
6.19.3 Player Drivers e 38
6.19.4 World File Attributes e 38
6.19.5 Body Attributes L e 38
6.19.6 WIndows e 39
Terrain 40
6.20.1 OVEIVIEW 40
6.20.2 libgazebolinterfaces 40
6.20.3 Player Drivers e 40
6.20.4 World File Attributes e 40
6.20.5 Body Attributes L 40
TotemPole 41
6.21.1 OVEIVIEW 41
6.21.2 libgazebolinterfaces 41
6.21.3 Player Drivers e 41
6.21.4 World File Attributes e 41
6.21.5 Body Attributes L e 41
TruthWidget e 42
6.22.1 OVEIVIEW 42
6.22.2 libgazebolinterfaces 42
6.22.3 Player Drivers e 42
6.22.4 World File Attributes 42
6.22.5 Body Attributes L e 42
WheelChalr 43
6.23.1 OVerVIeW 43
6.23.2 libgazebolinterfaces 43
6.23.3 Player Drivers e 43
6.23.4 World File Attributes e 43
6.23.5 Body Attributes L 43

10

Developer Guide
Gazebo Architecture

Adding a New Model

8.1 Model SourceFiles L.
8.2 RegisteringtheModel
8.3 Working with GNU Autotools

libgazebo

9.1 Introduction
9.2 Architecture e
9.3 Devicesand Interfaces
9.4 Using libgazebo
9.5 Building Programs With libgazebo

l1ibgazebo Interface Reference

101 camera. e
10.2 Factory e
10.3 Fiducial
104 gPS . . . o e
105 laser
10.6 position e
10.7 pOWer e e
108 ptz e
109 truth e

Platform Specific Build Information

Al MacOSX

Coding Standards and Conventions

B.1 Gazebo
B.2 libgazebo

Vi

45

46
46
46
47

49
49
49
49
50
51

52
53
55
57
59
61
63
65
67
69

Chapter 1

Introduction

1.1 What is Gazebo?

Gazebo is a multi-robot simulator for outdoor environments. Like Stage, it is capable of simulating a
population of robots, sensors and objects, but does so in a three-dimensional world. It generates both
realistic sensor feedback and physically plausible interactions between objects.

Gazebo is normally used in conjunction with the Player device server. Player provides an abstracted,
network-centric mechanism (a server) through which robot controllers (clients) can interact with real robots
and sensors. Gazebo works in conjunction with Player, providing simulated sensor data in the place of
real sensor data. Ideally, client programs cannot tell the difference between real devices and the Gazebo
simulation of those devices.

Gazebo can also be controlled through a low-level interface (1 1bgazebo). This library included to
allow third-party developers to easily integrate Gazebo into their own (non-Player) robot device servers or
architectures.

Last but not least, Player is Open Source and Free Software, released under the GNU General Public
License. If you don’t like how something works, change it. And please send us your patch!

1.2 Stage and Gazebo

The Player/Stage project provides two multi-robot simulators: Stage and Gazebo. Since Stage and Gazebo
are both Player-compatible, client programs written using one simulator can usually be run on the other
with little or no modification. The key difference between these two simulators is that whereas Stage is
designed to simulate a very large robot population with low fidelity, Gazebo is designed to simulated a small
population with high fidelity. Thus, the two simulator are complimentary, and users may switch back and
forth between them according to their needs.

1.3 Getting Gazebo

Gazebo is release in source form through the Player/Stage website:
http://playerstage.sourceforge.net

Check the downloads page for the latest software releases, and check the documentation page for the latest

version of this manual.

1.4 System Requirements

Gazebo is primarily developed for x86/Linux systems using GCC and GNU autotools. It can, however, be
ported fairly easily to Posix-like systems with X11 and OpenGL extensions (it is known to run more-or-less
out-of-the-box on Apple’s OS X, for example).

For best performance, users should also ensure that they are using hardware accelerated display drivers;

try:
$ glxinfo

and check for “direct rendering: Yes”. Please, please don’t ask the Gazebo developers how to get hardware
acceleration working for your particular graphics card; you should be able to figure this out by consulting
various on-line sources.

1.5 Bugs

This software is provided WITHOUT WARRANTY. Nevertheless, if you find something that doesn’t work,
or there is some feature you would like to see, you can submit a bug report/feature request through the
Player/Stage homepage:

http://playerstage.sourceforge.net

Include a detailed description of you problem and/or feature request, and information such as the Player
version and operating system. Make sure you also select the “gazebo” category when reporting bugs.

1.6 License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received
a copy of the GNU General Public License along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1.7 Acknowledgments

Gazebo is written by Nate Koenig and Andrew Howard. This work is supported by DARPA grant DABT63-
99-1-0015 (MARS). Thanks also to SourceForge.net for project hosting.

Part |

User Guide

Chapter 2

General Usage

2.1 Installing Third-Party Dependencies

Gazebo relies on a number of third-party libraries, most of which will probably be installed on your system
by default. You may, however, have to install the following additional packages before installing Gazebo:

e libXML2: pretty much all distributions will have this package.

e OpenDynamicsEngine (ODE): most distributions have this package (including RedHat, Gentoo, Fink);
if in doubt, you can build it yourself from the sources here:
http://opende.sourceforge.net/ode.html

e Geospatial Data Abstraction Library (GDAL): this is less common, although there is a Fink package.
Build it from the sources here:
http://remotesensing.org/gdal/

2.2 Building and Installing Gazebo

The Gazebo source tarball can be obtained from

http://playerstage.sourceforge.net/
After unpacking the tarball, read the generic instructions in README and INSTALL. If you don’t feel like
reading those files, the following should suffice in most cases:

$./configure
$ make
$ make install

Gazebo will be installed in the default location: Zusr/local/. The configure script accepts a number
of options for customizing the build process, including changing the install location and adding/removing
device drivers. For example, to change the install location for Gazebo to ~/01ocal in your home directory,
use:

$./configure --prefix /home/<username>/local

Please read the FAQ entry on local installations, available here:
http://playerstage.sourceforge.net/fag.htmi

To see a complete list of build options, use:
$./configure --help

If you are going to use Gazebo with Player, note that Gazebo must be installed before Player.

2.3 Starting Gazebo

The Gazebo server can be started as follows:
$ gazebo <worldfile>

where <wor Idfi le> is the file containing the description of the world and everything in it. Sample world
files can be found in the wor lds directory of the source distribution, or in the installed version under
/usr/local/share/gazebo/wor Ids/ (default install). For example:

$ gazebo /Zusr/local/share/gazebo/worlds/examplel._world

will create a simple world with a single robot. Gazebo will display a window with a view of the simulated
world; the camera viewpoint can be changed by dragging around with the mouse.

2.4 Working with Player

The Player device server treats Gazebo in exactly the same way that it treats real robot hardware: as a device
that is a source of data and a sink for commands. Users must therefore run Player seperately, and point
it at an running instance of Gazebo. Player has a number of specific drivers, such as gz _position and
gz_laser that can be used to interact with Gazebo models.

For example, after starting Gazebo as per the above example, run Player like this:

$ player -g default /usr/local/share/player/config/gazebo.cfg
Player will output a message indicating that is has connected with the simulation:
libgazebo msg : opening /tmp/gazebo-<username>-default-sim-default

Users can now interact with the simulated robot exactly as the would a real robot. Try running playerv,
for example:

$ playerv —--position:0 --laser:0

This will pop up the standard Player viewer utility. You should see an outline of the robot and the laser scan.
Use the mouse to pan and zoom. You can driver the robot around by selecting the “command” option from
the menu, and then dragging the little cross hairs to where you want the robot to go. You should see the the
robot in the Gazebo window moving at the same time.

See Chapter 4 for examples of typical Player/Gazebo configurations, and consult the Player manual for
information on specific Player drivers.

2.5 Command Line Options

Gazebo recognizes the following command line options.

Argument

Meaning

'

Print the version string.

Chapter 3

The World File

The world file contains a description of the world to be simulated by Gazebo. It describes the layout of
robots, sensors, light sources, user interface components, and so on. The world file can also be used to
control some aspects of the simulation engine, such as the force of gravity or simulation time step.

Gazebo world files are written in XML, and can thus be created and modified using a text editor. Sam-
ple world files can be found in the wor Ids directory of the source distribution, or in the installed version
(default install) under

/usr/local/share/gazebo/worlds/

3.1 Key Conceptsand Basic Syntax

The world consists mainly of model declarations. A model can be a robot (e.g. a Pioneer2AT or Seg-
wayRMP), a sensor (e.g. SICK LMS200), a static feature of the world (e.g. MapExtruder) or some manip-
ulable object. For example, the following declaration will create a Pioneer2AT named “robotl”:

<model :Pioneer2AT>
<id>robotl</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>

</model :Pioneer2AT>

Associated with each model is a set of attributes such as the model’s position <xyz> and orientation
<rpy>; see Section 6 for a complete list of models and their attributes.
Models can also be composed. One can, for example, attach a scanning laser range-finder to a robot:

<model :Pioneer2AT>
<id>robotl</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>
<model : SickLMS200>
<id>laseril</id>
<parentBody>chassis</parentBody>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 0</rpy>
</model : SickLMS200>

</model :Pioneer2AT>

The <parentBody> tag indicates which part of the robot the laser should be attached to (in this case, the
chassis rather than the wheels). The <xyz> and <rpy> tags describe the laser’s position and orientation
with respect to this body (see Section 3.4 for a discussion of coordinate systems). Once attached, robot and
the laser form a single rigid body.

3.2 Graphical User Interface

While Gazebo can operate without a GUI, it is often useful to have a viewport through which the user can
inspect the world. In Gazebo, such user interface components are provided through special models (such as
the ObserverCam) that can be declared and configured in the world file. See the documentation on the
ObserverCam model for details.

3.3 Canonical World File L ayout

The “standard” layout for the world file is can be seen from the examples included in the wor 1ds directory.
The basic components are as follows:

¢ XML meta-data, start of world block, more XML meta-data:

<?xml version="1.0"?7>
<gz:world
xmIns:gz="http://playerstage.sourceforge.net/gazebo/xmlschema/#gz”

e Global parameters:

<params:GlobalParams>
<gravity>0.0 0.0 -9.8</gravity>
</params:GlobalParams>

e GUI components:

<model :ObserverCam>
<id>userCamO</id>
<xyz>0.504 -0.735 0.548</xyz>
<rpy>-0 19 119</rpy>
<window>
<title>Observer</title>
<size>640 480</size>
<pos>0 0</pos>
</window>
</model :ObserverCam>

e Light sources (without lights, the scene will be very dark):

<model :LightSource>
<id>lightO</id>
<xyz>0.0 0.0 10.0</xyz>

</model :LightSource>

e Ground planes and/or terrains:

<model :GroundPlane>
<id>groundl</id>
</model :GroundPlane>

¢ Robots, objects, etc.:

<model :Pioneer2AT>
<id>robotl</id>
<xyz>0 0.0 0.5</xyz>
<model : SickLMS200>
<id>laserl</id>
<xyz>0.15 0 0.20</xyz>
</model : SickLMS200>
</model :Pioneer2AT>

e End of world block:
</gz:world>

A detailed list of models and their attributes can be found in Chapters 5 and 6.

3.4 Coordinate Systems and Units

By convention, Gazebo uses a right-handed coordinate system, with z and y in the plane, and z increasing
with altitude. Most models are designed such that the are upright (with respect to the z axis) and pointing
along the positive z axis. The tag <xyz> is used to indicate an object’s position (z, v and z coordinates); the
tag <rpy> is used to indicate an objects orientation (Euler angles; i.e., roll, pitch and yaw). For example,
<xyz>1 2 3</xyz>indicates a translation of 1 m along the x-axis, 2 m along the y-axis and 3 m along
the z-axis; <rpy>10 20 30</rpy> indicates a rotation of 30 degrees about the z-axis (yaw), followed
by a rotation pf 20 degrees about the y-axis (pitch) and a rotation of 10 degrees about the x-axis (roll).

Unless otherwise specified, the world file uses Sl units (meters, seconds, kilograms, etc). The following
idioms should also be noted:

e Angles and angular velocities are measured in degrees and degrees/sec, respectively.

Chapter 4

Working with Player

The Player device server treats Gazebo in exactly the same way that it treats real robot hardware: as a
device that is a source of data and a sink for commands. A key advantage of this approach is that users may
mix Player abstract drivers with simulation drivers. Thus, for example, drivers such as VFH (Vector Field
Histogram) and AMCL (adapative Monte-Carlo localization), will work equally well with simulated and
real robots. In the following sections, we describe some basic scenarios that demonstate this interaction.

4.1 Setting up the Simulation
The basic steps for setting up and running a combined Player/Gazebo simulation are as follows.
1. Write the Gazebo world file.

2. Start Gazebo.

w

. Write the corresponding Player configuration file(s).
4. Start Player(s).
5. Start client program(s).

Note that Gazebo must be started before the Player server, and that the Player server must re-started when-
ever Gazebo is re-started.

4.2 Example: Using a Single Robot

Consider the case of a single robot with a scanning laser range-finder. The following Gazebo world file
snippet will create a Pioneer2DX robot with SICK LMS200 laser.

<model :Pioneer2DX>
<id>robotl_position</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>
<model : SickLMS200>
<id>robotl_laser</id>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 O</rpy>

10

</model : SickLMS200>
</model :Pioneer2DX>

The corresponding snippet of the Player configuration file should look like this:

position:0

(
driver '“gz_position"
gz_id "'robotl position”

)

laser:1

(

driver "gz_laser"
gz_id "'robotl laser™

)

To run this simulation, start Gazebo with:
$ gazebo <myworld>

where <mywor 1d> is the name of the Gazebo world file, and start Player with
$ player -g default <myconfig>

where <myconfig> is the name of the Player configuration file. Client programs can connect to the
simulated devices devices on the default Player port 6665.

4.3 Example: Using a Single Robot with the VFH driver

Abstract devices can be mixed freely with simulated devices in the Player server. Thus, for example, it is
possible to use the VFH (Vector Field Histogram) driver with a simulated robot. The following Gazebo
world file snippet will create a Pioneer2DX robot with SICK LMS200 laser.

<model :Pioneer2DX>
<id>robotl_position</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>
<model : SickLMS200>
<id>robotl_laser</id>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 0</rpy>
</model :SickLMS200>
</model :Pioneer2DX>

The corresponding snippet of the Player configuration file should look like this:

position:0

(
driver '“gz_position"
gz_id "'robotl position”

11

)

laser:0

(
driver gz_laser"”
gz_id "robotl laser"

)

position:1
(
driver "vfh"
<vfh driver settings>

)

Note that the configuration file is exactly as per the first example; we have simply added another device to
the Player server. The VFH driver will use the simulated robot chassis and laser exactly as it would a real
robot chassis and laser.

To run this simulation, start Gazebo with:

$ gazebo <myworld>
where <mywor 1d> is the name of the Gazebo world file, and start Player with
$ player -g default <myconfig>

where <myconfig> is the name of the Player configuration file. Client programs can connect to the server
on the default Player port 6665.

4.4 Example: Using Multiple Robots

There are a number of ways to work with multiple robots. The simplest way is to use multiple instances of
the Player server (one for each robot being simulated). The following Gazebo world file snippet will create
a pair of Pioneer2DX robots with SICK LMS200 lasers.

<model :Pioneer2DX>
<id>robotl_position</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>
<model : SickLMS200>
<id>robotl_laser</id>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 O0</rpy>
</model : SickLMS200>
</model :Pioneer2DX>

<model :Pioneer2DX>
<id>robot2_position</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>

12

<model :SickLMS200>
<id>robot2_laser</id>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 O</rpy>
</model :SickLMS200>
</model :Pioneer2DX>

Since there will be two instances of the Player server, two different configuration files are required. For the
first robot

position:0

(
driver ''gz_position"
gz_id "'robotl position”

)

laser:1

(

driver gz_laser"”
gz_id "robotl laser"

)

and for the second robot:

position:0

(
driver ''gz_position"
gz_id "'robot2_position

)

laser:1

(

driver gz_laser"”
gz_id "'robot2 laser"

)

Note that these files are identical apart from the gz_ id property. In general, however, the simulated robots
may be heterogeneous, in which case the Player configuration files will differ substantially.
To run this simulation, start Gazebo with:

$ gazebo <myworld>
where <mywor 1d> is the name of the Gazebo world file, and start two instances of Player with
$ player -p 7000 -g default <myconfigl>
and
$ player -p 7001 -g default <myconfig2>
where <myconfigl> and <myconfig2> are the two Player configuration files. Client programs can

connect to the robots robot1 and robot2 through ports 7000 and 7001, respectively.

13

45 Example: Using Multiple Robotswith - - gazebo- prefi x

When the simulated robots are homogeneous, one may simplify the process somewhat by employing the
-—gazebo-prefix flag with Player. The following Gazebo world file snippet will create a pair of Pio-
neer2DX robots with SICK LMS200 lasers.

<model :Pioneer2DX>
<id>robotl_position</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>
<model : SickLMS200>
<id>robotl_laser</id>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 O</rpy>
</model :SickLMS200>
</model :Pioneer2DX>

<model :Pioneer2DX>
<id>robot2_position</id>
<xyz>0 0 0.40</xyz>
<rpy>0 0 45</rpy>
<model : SickLMS200>
<id>robot2_laser</id>
<xyz>0.15 0 0.20</xyz>
<rpy>0 0 O</rpy>
</model :SickLMS200>
</model :Pioneer2DX>

Since the robots are identical, we can write one Player configuration file for both:

position:0

¢ driver '“gz_position"
gz_id " _position”

)

laser:1

(
driver gz_laser"”
gz_id "_laser™

)

Note that the gz_ id values are incomplete; we will add prefix to these values when the Player server is
started.
To run this simulation, start Gazebo with:

$ gazebo <myworld>

where <mywor 1d> is the name of the Gazebo world file, and start two instances of Player with

14

$ player -p 7000 -g default --gazebo-prefix robotl <myconfig>
and
$ player -p 7001 -g default --gazebo-prefix robot 2 <myconfig>

where <myconfig> is the common Player configuration file. Client programs can connect to the robots
robotl and robot2 through ports 7000 and 7001, respectively.

15

Chapter 5

Non-model Reference

5.1 Global Paramamerters
General parameters used by Gazebo.

<params:GlobalParams>

Attribute Type Default Description

<gravity> 3-vector (0,0,-9.8) Gravity vector

16

Chapter 6

Model Reference

Gazebo currently supports the following models.

AvatarHel i: USC AVATAR Helicopter.

Bl imp: A dirigible.

ClodBuster: Car-like Non-Holonomic 4-wheeled Robot with Ackerman Steering.
Factory: A tool to dynamically create models.

GarminGPS: Basic GPS device model.

GroundPlane: A flat plane that represents the ground.

LightSource: A single point light.

MapExtruder: Linearly extrudes a 2D image into 3D geometry.

ObserverCam: A gods-eye camera (GUI component for user interaction).
Pioneer2AT: ActivMedia Pioneer2AT (“all terrain™) robot with 4 wheels and skid steering.
Pioneer2DX: ActivMedia Pioneer2DX (indoor) robot with 2 drive wheels and a castor.
Pioneer2Gripper: ActivMedia Pioneer2 Gripper.

Pioneer2Sonars: ActivMedia Pioneer2 sonar ring.

PointSet: A model to visualize a point cloud.

SegwayRMP: custom modified Segway RMP (“Robot Mobility Platform™) robot.
SickLMS200: the ubiquitous SICK scanning laser range-finder.

Shrimp: A robot designed after the Shrimp robot by BlueBotics.

SimpleSolid: Simple solid shapes, such as boxes and spheres.

SonyVID30: color video camera with controllable pan-tilt-zoom.

Terrain: A terrain triangle mesh model.

17

e TotemPole: A vertical pole of simple solids, used as a visual fiducial.
e TruthWidget: A magical device for getting and seting model poses.

¢ WheelChair: A wheelchair robot.

18

6.1 Avat ar Hel i

Authors

Srikanth Saripalli srik(at)usc.edu

6.1.1 Overview
The AvatarHel i model simulates the USC AVATAR helicopter, a Bergen Industrial Twin RC helicopter
(http://www.bergenrc.com/Industrial Twin.asp).

6.1.2 |i bgazebo Interfaces

AvatarHel i currently does not support any interfaces.

6.1.3 Player Drivers

No player drivers are available.

6.1.4 World File Attributes

AvatarHel 1 models can be instantiated using the <model : AvatarHel 1>tag. The following attributes
are supported.

<model: AvatarHeli>

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.1.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

19

6.2 Blinp
Authors

Pranav Srivastava pranav(at)seas.upenn.edu

6.2.1 Overview

The BI 1mp model simulates a UPenn Blimp.

6.2.2 |ibgazebo Interfaces

Bl imp supports the I1bgazebo position and position3d interface.

6.2.3 Player Drivers

Basic motor control and odometry information is available through the gz _positionor gz position3d
driver.

6.2.4 World File Attributes

B 1 imp models can be instantiated using the <model : Bl imp>tag. The following attributes are supported.

<model:Blimp>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

<i1s3d> trueffalse false Does this use the position3d interface?

6.2.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

20

6.3 C odBust er

Authors

Pranav Srivastava pranav(at)seas.upenn.edu

6.3.1 Overview

The ClodBuster model simulates the UPenn ClodBuster robot (4 wheel drive robot with Ackerman
steering).

6.3.2 |i bgazebo Interfaces

ClodBuster supports the Iibgazebo position interface.

6.3.3 Player Drivers

Basic motor control and odometry information is available through the gz_position driver.

6.3.4 World File Attributes

ClodBuster models can be instantiated using the <model : ClodBuster>tag. The following attributes
are supported.

<model:ClodBuster>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation

<raw_encoder _position> true/false false Flag indicating return of raw wheel encoder values.

6.3.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

21

6.4 Factory

Authors

Chris Jones cvjones(at)usc.edu, Nathan Koenig nkoenig(at)usc.edu

6.4.1 Oveview

The Factory model maintains no physical characteristics, but instead allows the user to dynamically create
models at runtime. A model is instantiated by passing an XML character string to a Factory model. The
character string use the same model format as the .world files. Note that the string should only contain the
model description, and no other tags. The XML string is passed into Gazebo through the gz _factory interface
which has the same interface as the Player speech device.

6.4.2 |ibgazebo Interfaces

Factory supports the 1 ibgazebo factory interface.

6.4.3 Player Drivers

A new model is created using the gz_factory driver.

6.4.4 World File Attributes

Factory models can be instantiated using the <model : Factory> tag. The following attributes are
supported.

<model:Factory>
Attribute Type Default Description
<id> string NULL Model ID string

6.4.5 Body Attributes

This model does not have a physical representation.

22

6.5 Garm nGPS

Authors

Pranav Srivastava pranav(at)seas.upenn.edu

6.5.1 Overview
The GarminGPS model simulates GPS information by using the flat-world approximation. It doesn’t ac-
count for GPS occlusion or loss of signal, etc.

6.5.2 |ibgazebo Interfaces

GarminGPS supports the 1 ibgazebo gps interfaces.

6.5.3 Player Drivers
The GPS position are available through the gz _gps driver.

6.5.4 World File Attributes

GarminGPS models can be instantiated using the <model :GarminGPS> tag. The following attributes
are supported.

<model:GarminGPS>

Attribute Type Default Description

<id> string NULL Model ID string

<XyzZ> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation

<origin> 3-vector (0,0,0) coordinates of the origin in lat-long-alt

6.5.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

23

6.6 G oundPl ane
Authors

Nathan Koenig nkoenig(at)usc.edu

6.6.1 Overview

The GroundP Iane model simulates a flat infinite plane.

6.6.2 |i bgazebo Interfaces

GroundPlane has no 1 1bgazebo interface.

6.6.3 Player Drivers

There are no player drivers.

6.6.4 World File Attributes

GroundPlane models can be instantiated using the <model : GroundP lane> tag. The following at-
tributes are supported.

<model:GroundPlane>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation

<normal> 3-vector (0,0,1) Direction of the normal vector
<height> double 0 Distance along the z-axis to place the plane
<color> 3-vector (0,0,0) RGB color

<texture2D> string NULL Texture image filename

<cfm> double 0.01 Constraint Force Mixing parameter

6.6.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

24

6.7 Light Source

Authors

Andrew Howard ahoward(at)usc.edu, Nathan Koenig nkoenig(at)usc.edu

6.7.1 Overview

The LightSource model simulates a single point light.

6.7.2 |i bgazebo Interfaces

LightSource has no Iibgazebo interface.

6.7.3 Player Drivers

There are no player drivers.

6.7.4 World File Attributes

LightSource models can be instantiated using the <model :LightSource> tag. The following at-
tributes are supported.

<model:LightSource>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation
<ambientColor> 4-vector (0.20.20.21.0) Ambient color

<diffuseColor> 4-vector (0.80.80.81.0) Diffuse color

<specularColor> 4-vector (0.20.20.21.0) Specular color

<attenuation> 3-vector (1.0 0.0 0.0) Constant, Linear, Quadratic attenuation

6.7.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

25

6.8 MapExtruder

Authors

Nathan Koenig nkoenig(at)usc.edu

6.8.1 Overview

The MapExtruder model extrudes a 2D image into 3D geometry. This is useful for generating simple
maps. The bottom left point in the image is mapped to the position specified by the pos tag.

6.8.2 |i bgazebo Interfaces

MapExtruder currently has no 1 ibgazebo interface.

6.8.3 Player Drivers

There are no player drivers.

6.8.4 World File Attributes

MapExtruder models can be instantiated using the <model :MapExtruder> tag. The following at-
tributes are supported.

<model:MapExtruder>

Attribute Type Default Description

<id> string NULL Model ID string

<XyzZ> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation

<imageFile> string NULL PPM image file to extrude
<negative> truef/false false Use the inverse color values
<threshold> integer 200 Value over which a pixel is considered filled space
<width> float 0.1 Width of the geometries

<height> float 1 Height of the geometries, along z-axis
<scale> float 0.1 Scale the map up or down

<color> 3-vector (0,0,0) RGB color

<errBound> float 5 Allowable error in the geometries
<halign> left/center left Horizontal alignment

<valign> bottom/center bottom Vertical alignment

6.8.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

26

6.9 bserver Cam

Authors

Nathan Koenig nkoenig(at)usc.edu, Andrew Howard ahoward(at)usc.edu

6.9.1 Overview

The ObserverCam model provides a interactive viewport through which users can view the simulation

(think of it as a fly god’s eye).

6.9.2 World File Attributes

ObserverCam models can be instantiated using the <model : ObserverCam> tag. The following at-

tributes are supported.

<model:ObserverCam>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation

<updatePeriod> float 0.1 Seconds between refresh

<displayRays> true/false false Display laser rays

<saveFrames> string NULL Directory to store image frames

<shadeModel > flat/smooth flat OpenGL shading model

<polygonMode> point/line/fill fill OpenGL polygon mode

<lens> Camera lens attributes
<hfov> degrees 60 Horizontal field of view
<nearClip> meters 0.20 Distance to near clip plane
<farClip> meters 1000.0 Distance to far clip plane

6.9.3 Windows

The following are definitions for the ObserverWindow. The window attribute block must be a child of

<model:ObserverCam>.

<window:X11GLWindow>

Attribute Type Default Description

<id> string NULL Window ID string
<title> string NULL Window title string
<size> 2-vector (100,100) Initial size of the window

<moveScale> float

Mouse movement scale factor

Mouse Commands

Button

Vertical Move

Horizontal Move

Left Rotate along X axis

Rotate along Z axis

Middle

Translate along Z axis

Translate along X axis

Right

Translate along Y axis

Translate along X axis

27

6.9.4 Body Attributes

This model does not have a physical representation.

28

6.10 Pi oneer 2AT

Authors

Andrew Howard ahoward(at)usc.edu, Nathan Koenig nkoenig(at)usc.edu

6.10.1 Overview

The Pioneer2AT model simulates the ActivMedia Pioneer2AT (*“all terrain”) robot with 4 wheels and
skid steering. Currently, it does not simulate the robot’s sonar ring.

6.10.2 | i bgazebo Interfaces

Pioneer2AT supports the 1 ibgazebo position interface.

6.10.3 Player Drivers

Basic motor control and odometry information is available through the gz_position driver.

6.10.4 World File Attributes

Pioneer2AT models can be instantiated using the <model : Pioneer2AT>tag. The following attributes
are supported.

<model:Pioneer2 AT >

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.10.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

29

6.11 Pi oneer 2DX

Authors

Andrew Howard ahoward(at)usc.edu

6.11.1 Overview

The Pioneer2DX model simulates the ActivMedia Pioneer2DX (indoor) robot with 2 drive wheels and a
castor. Currently, it does not simulate the robot’s sonar ring.

6.11.2 | i bgazebo Interfaces

Pioneer2DX supports the 1 ibgazebo position interface.

6.11.3 Player Drivers

Basic motor control and odometry information is available through the gz_position driver.

6.11.4 World File Attributes

Pioneer2DX models can be instantiated using the <model : Pioneer2DX>tag. The following attributes
are supported.

<model:Pioneer2DX>

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.11.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

30

6.12 Pi oneer2G i pper

Authors
Carle Cote Carle.Cote(at)USherbrooke.ca

6.12.1 Overview

The Pioneer2Gripper model simulates the ActivMedia Pioneer2 Gripper. Every object in the world
that can be picked up by a gripper must set the <canBeGrip> to true.

6.12.2 | i bgazebo Interfaces

Pioneer2Gripper supports the 1 ibgazebo gripper interface.

6.12.3 Player Drivers

Control of the gripper position is available through the gz_gripper driver.

6.12.4 World File Attributes

Pioneer2Gripper models can be instantiated using the <model :Pioneer2Gripper>tag. The
following attributes are supported.

<model:Pioneer2Gripper>

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.12.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

31

6.13 Pi oneer 2Sonar s

Authors

Carle Cote Carle.Cote(at)USherbrooke.ca

6.13.1 Overview

The Pioneer2Sonars model simulates the ActivMedia Pioneer2 Sonar Ring. The sonar ring consists of
15 ray proximity sensors, each of which simulates a single sonar.

6.13.2 | i bgazebo Interfaces

Pioneer2Sonars supports the 1 ibgazebo sonar interface.

6.13.3 Player Drivers

Control of the sonars is available through the gz_sonars driver.

6.13.4 World File Attributes

Pioneer2Sonars models can be instantiated using the <model :Pioneer2Sonars> tag. The fol-
lowing attributes are supported.

<model:Pioneer2Sonars>
Attribute Type Default Description
<id> string NULL Model ID string
<Xyz> 3-vector (0,0,0) Position of the ray
<dir> 3-vector (0,0,0) Direction of the ray
<range> meters O Initial sensor range

6.13.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

32

6.14 Poi nt Set
Authors

Andrew Howard ahoward(at)usc.edu

6.14.1 Overview

The PointSet model visualizes a, usually dense, point cloud.

6.14.2 | i bgazebo Interfaces

PointSet has no 1ibgazebo interface.

6.14.3 Player Drivers

There are no player drivers.

6.14.4 World File Attributes

PointSet models can be instantiated using the <model : PointSet>tag. The following attributes are
supported.

<model:PointSet>

Attribute Type Default Description

<id> string NULL Model ID string
<Xyz> 3-vector (0,0,0) Model position
<rpy> Euler angles (0,0,0) Model orientation
<pointFile> string NULL Point cloud data file

6.14.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

33

6.15 SegwayRMWP

Authors

Andrew Howard ahoward(at)usc.edu

6.15.1 Overview

The SegwayRMP model simulates RMP modification of the Segway HT.

Those of you that already have one of these will know what this is; for everyone else: the Segway
RMP (Robotic Mobility Platform) is a two-wheeled, dynamically stabilized robot made from a modified
Segway HT (Human Transporter). This is an interesting beast: it is large, fast and heavy, and will fall down
alarmingly if you turn the power off.

The SegwayRMP model includes a PID inverted pendulum controller written by Marin Kobilarov
mkobi lar(at)usc.edu. The dynamics are roughly similar to those of the real robot, but users should
not expect a close correlation.

6.15.2 |i bgazebo Interfaces

SegwayRMP supports the I ibgazebo position interface. IMU data is not yet available.

6.15.3 Player Drivers

Basic motor control and odometry information is available through the gz_position driver. IMU data is
not yet available.

6.15.4 World File Attributes

SegwayRMP models can be instantiated using the <model : SegwayRMP> tag. The following attributes
are supported.

<model:SegwayRMP >

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.15.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.
topPlate Top plate

34

6.16 Shrinp

Authors

Stijn Opheide sti jn.opheide(at)kotnet.org,Jef Marien Jef.marien(at)student.kuleuven.ac.be,
Koen Jans koen. jans(at)student.kuleuven.ac.be

6.16.1 Overview

The Shrimp model simulates the BlueBotics Shrimp robot. This model is currently under development.

6.16.2 |i bgazebo Interfaces

Shrimp supports the 1ibgazebo position interface.

6.16.3 Player Drivers

Basic motor control and odometry information is available through the gz_position driver.

6.16.4 World File Attributes

Shrimp models can be instantiated using the <model : Shrimp> tag. The following attributes are sup-
ported.

<model:Shrimp>

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.16.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

35

6.17 Si ckLM5200

Authors

Andrew Howard ahoward(at)usc.edu, Nathan Koenig nkoenig(at)usc.edu

6.17.1 Overview
The SickLMS200 model simulates the ubiquitous SICK scanning laser range-finder.

6.17.2 | i bgazebo Interfaces
Si1ckLMS200 supports the 1ibgazebo laser and fiducial interfaces.

6.17.3 Player Drivers

Range and intensity data is available through the gz_laser driver. Fiducial information (ID, range, bearing
and orientation) is available through the gz_fiducial driver. Note that, at present, only SimpleSolid
models can be fiducials.

6.17.4 World File Attributes

SickLMS200 models can be instantiated using the <model - SickLMS200>tag. The following attributes
are supported.

<model:SickLMS200>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

<rangeCount> int 361 The number of range readings to generate.
<rayCount> int 91 The number of actual rays to generate.
<maxRange> float 8.192 Maximum laser range (m).
<minRange> float 0.20 Minimum laser range (m).
<scanPeriod> float 0.200 The interval between successive scans (S).

Note that when the number of rays is less than the number of range readings, the “missing” range
readings will be interpolated. Reducing the number of rays is a good way to save CPU cycles (at the
expense of simulation fidelity).

6.17.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

36

6.18 Si npl eSol i d

Authors

Andrew Howard ahoward(at)usc.edu

6.18.1 Overview

The SimpleSol id model creates simple solid objects, such as spheres and boxes. The solids have mass,

and will interact with other objects.

6.18.2 | i bgazebo Interfaces

SimpleSol id does not support any interfaces.

6.18.3 Player Drivers

There are no Player drivers for SimpleSolid.

6.18.4 World File Attributes

SimpleSol1d models can be instantiated using the <model :SimpleSolid>tag. The following at-

tributes are supported.

<maodel:SimpleSolid>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Euler angles (0,0,0) Model orientation

<shape> string NULL Shape description. Can be any of: sphere, box, cylinder.
<size> float 1.0 Sphere diameter.

<size> tuple (0.1, 1.0) Cylinder diameter and height.

<size> tuple (1.0,1.0,1.0) Box width, length and height.

<mass> float 1.0 Mass of the object (kg).

<color> tuple (0,0,0,1) Color of the object (including alpha, if transparency is enabled.
<retro> float 0 Retro-reflectivity level (0 = not a retro-reflector, 1 = perfect retro-re
<fiducial> integer -1 Fiducial ID (-1 = not a fiducial).

<transparent> true/false false Sets transparency.

<texture2D> string NULL Texture image filename

<cfm> double 0.01 Constraint Force Mixing parameter

6.18.5 Body Attributes

The following bodies are used by this model.

Name

Description

canonical

The can

onical (default) body.

37

6.19 SonyVI D30

Authors

Nathan Koenig nkoenig(at)usc.edu, Andrew Howard ahoward(at)usc.edu, Pranav Srivastava

pranav(at)seas.upenn.edu

6.19.1 Overview

The SonyVI1D30 model simulates the Sony VID 30 pan-tilt-zoom camera. This model will probably be

merged with the MonoCam model in future releases.

6.19.2

| i bgazebo Interfaces

SonyVI1D30 supports the 1 ibgazebo ptz interface.

6.19.3 Player Drivers

The camera position (pan and tilt) can be controlled by setting pan/tilt using the gz _ptz driver.

6.19.4 World File Attributes
SonyVID30 models can be instantiated using the <model :SonyVI1D30> tag. The following attributes

are supported.

<model:SonyVID30>

Attribute Type Default Description
<id> string NULL Model ID string
<XyzZ> 3-vector (0,0,0) Model position
<rpy> Euler angles (0,0,0) Model orientation
<gain> double 1.0 Motion gain
<zoomLimits> tuple (10.0, 60.0) Zoom limits
<imageSize> tuple (320, 240) Size of the image in pixels
<updatePeriod> float 0.1 Seconds between refresh
<displayRays> true/false false Display laser rays
<saveFrames> string NULL Directory to store image frames
<shadeModel > flat/smooth flat OpenGL shading model
<polygonMode> point/line/fill fill OpenGL polygon mode
<lens> Camera lens attributes
<hfov> degrees 60 Horizontal field of view
<nearClip> meters 0.20 Distance to near clip plane
<farClip> meters 1000.0 Distance to far clip plane
6.19.5 Body Attributes
The following bodies are used by this model.
Name Description
canonical The canonical (default) body.
head The camera head (the bit that moves.)

38

6.19.6 Windows

The following are definitions for the windows. The window attribute block must be a child of <model:SonyVID30>.

<window:X11GLWindow>
Attribute Type Default Description
<id> string NULL Window ID string
<title> string NULL Window title string

39

6.20 Terrain

Authors

Nathan Koenig nkoenig(at)usc.edu

6.20.1 Overview

The Terrain model generates a triangle mesh from a 2D image or other data file, such as a DEM. The
generated mesh has a variable triangle density corresponding to a user defined error bound. A high error
bound allows for more error in the terrain representation, resulting in fewer triangles.

6.20.2 1i bgazebo Interfaces

Terrain has no libgazebo interface.

6.20.3 Player Drivers

There are no player drivers.

6.20.4 World File Attributes

Terrain models can be instantiated using the <model :Terrain> tag. The following attributes are
supported.

<model:Terrain>

Attribute Type Default Description

<id> string NULL Model ID string

<Xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation
<vertexSpacing> double 1.0 Meters between the vertices of the mesh.
<elevationScale> double 1.0 Elevation scale factor in meters.
<color> 3-vector (0,0,0) RGB color

<texture2D> string NULL Texture image filename
<textureRepeat> tuple (1.01.0) Texture repetition in X and Y directions.
<cftm> double 0.01 Constraint Force Mixing parameter

6.20.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

40

6.21 Tot enPol e

Authors

Andrew Howard ahoward(at)usc.edu

6.21.1 Overview

The TotemPole model generates a stack of simple solids to create a visual fiducial.

6.21.2 | i bgazebo Interfaces

TotemPole has no 1 1bgazebo interface.

6.21.3 Player Drivers

There are no player drivers.

6.21.4 World File Attributes

TotemPole models can be instantiated using the <model : TotemPole> tag. The following attributes

are supported.

<model: TotemPole>

Attribute Type Default Description
<id> string NULL Model ID string
<Xyz> 3-vector (0,0,0) Model position
<rpy> Euler angles (0,0,0) Model orientation
<shape> box/cylinder cylinder Simple Sold shape.
<diameter> double 0.10 Diameter of the totem pole in meters.
<steps> integer 1 Number of shapes used in the pole.
<step##_height> double 0.02 Height of the ##th shape.
<step ##_barcode> binarystring NULL Barcode of ##th shape.
6.21.5 Body Attributes
The following bodies are used by this model.
Name Description

canonical The canonical (default) body.

41

6.22 Trut hW dget

Authors

Chris Jones cvjones(at)usc.edu

6.22.1 Overview

The TruthWidgetis a magical device for querying and modifying the true pose of objects in the simulator.
It has no simulated body, but can be attached to other models to learn or change their pose.

6.22.2 | i bgazebo Interfaces
TruthWidget supports the 1 ibgazebo truth interface.

6.22.3 Player Drivers
As of Player 1.4rc2, this model has no Player support.

6.22.4 World File Attributes

TruthWidget models can be instantiated using the <model : TruthWidget> tag. The following at-
tributes are supported.

<model: TruthWidget>

Attribute Type Default Description
<id> string NULL Model ID string
<xyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.22.5 Body Attributes

This model does not have a physical representation.

42

6.23 Wheel Chair
Authors

Pranav Srivastava pranav(at)seas.upenn.edu

6.23.1 Overview

The WheelChai r model simulates a robotic wheelchair.

6.23.2 | i bgazebo Interfaces

Whee I Chair supports the 1 itbgazebo position interface.

6.23.3 Player Drivers

Basic motor control and odometry information is available through the gz_position driver.

6.23.4 World File Attributes

Whee IChai r models can be instantiated using the <model :WheelChai r>tag. The following attributes
are supported.

<model:WheelChair>

Attribute Type Default Description
<id> string NULL Model ID string
<Xxyz> 3-vector (0,0,0) Model position

<rpy> Eulerangles (0,0,0) Model orientation

6.23.5 Body Attributes

The following bodies are used by this model.

Name Description
canonical The canonical (default) body.

43

Part |1

Developer Guide

44

Chapter 7

Gazebo Architecture

TODO

45

Chapter 8

Adding a New Model

This chapter describes the basic steps for creating a new model. It describes how the source files should be
laid out, how to register models with the server and how to work with GNU Autotools.

N.B. These instructions assume you are working from CVS, not a source snap-shot or
distribution.

Developers should consult Chapter 7 for detailed information on model class implementation. Developers
are also advised to read Appendix B for Gazebo coding standards and conventions.

8.1 Modd SourceFiles

Source code for models is located under server/models/, with a separate directory for each model.
Model directory names should match model class names, i.e., the SickLMS200 model is found the server/models/Sic
directory. Layout of files within the model directory is at the developers discretion; by convention, however,
models are comprised of a single header file containing the model class declarations, and one or more source
files containing the class definitions. Thus, the S1ckLMS200 model is comprised of SickLMS200.hh
and SickLMS200.cc.

The recommended way to create a new model is to copy an existing model with similar function-
ality, and perform some judicious search-and-replacing. In addition to changing the class name (e.g.
from SickLMS200 to MyModel), developers must also change the model’s naked New function. E.g.,
NewSi1ckLMS200() becomes NewMyModel (). This function is used to create instances of the model
class at run-time.

8.2 Registering the Model

Models must be registered with the server. Registration is handled by the Mode Il Factory class, which
can be found in server/ModelFactory.cc. Registration is a two step process:

1. Add a declaration for the new models creation function; e.g.:
#if INCLUDE_MYMODEL

extern Model* NewMyModel (World *world);
#endif

46

The INCLUDE macro will be defined automagically by Autotools (see below) if and only if the model
should be included in the build.

2. Inthe ModelFactory: :NewModel () function, add a clause for the new model, e.g.:

#ifdef INCLUDE_MYMODEL
if (strcmp(classname, "MyModel'™) == 0)
return NewMyModel (world);
#endif

This line allows the server to look up the model by name and construct an appropriate class instance
at run-time.

8.3 Working with GNU Autotools

Gazebo uses GNU Autotools to managing the build process; while Autotools can be daunting for new-
comers, the rewards are well worth the effort. When using Autotools, there are two key notions to bear in
mind:

e Project-level configuration is controlled by configure. infound in the project top-level directory.
e Module-level configuration is controlled by Make¥i le.am found in every sub-directory.

These configuration files are used to generate the Makefi 1e’s that will ultimately control the build process
(developers should never manipulate Makefi Ie’s directly).
The basic process for adding a new model to the Autotools setup is as follows.

1. Create MakeTFi le.am for the new model:

e Copy MakeTi le.amfrom another model into the new model directory.

o Modify all entries describing the model name. For example, if you copied Makefi le.amfrom
the S1ckLMS200 model, replace all references to sickIms200 with mymode Iname.

¢ Modify the SOURCES line to list the new model’s source files. Be sure to include header files in
this list (so they will included in the final distribution).

2. Modify Makefile.amin the server/models directory.
¢ Add the new model directory to the SUBDIRS line.
3. Modify configure. inin the top-level directory.

e In the “model tests” section, add a GAZEBO_ADD_MODEL entry for the new model. The argu-
ments are: model name (lower case), model path, whether or not the model should be included
in the default build, a list of libraries to check for and a list of headers to check for. The model
will not be built unless all of the library and header dependencies are satisfied.

¢ In the “create makefiles” section, add the path of the Makefi I e that needs to be created.
4. Re-generate the MakeFile’s:

e From the top-level directory, run:

47

$./bootstrap

with whatever arguments you would normally pass to configure.

Running make will now build the new driver.

48

Chapter 9

| 1 bgazebo

9.1 Introduction

External programs can use 11bgazebo to interact with the Gazebo simulator. 1ibgazebo is a simple C
library that allows other programs to peek and poke into a running simulation; through this library, programs
may read sensor data from and send commands to simulated devices. The player device server, for
example, uses 1ibgazebo in this way.

Normal users will interact with Gazebo via player and need not be aware of this library. This chapter
is included primarily to aid those who either wish to add a new type of interface to the simulator, or who
wish to write their own custom control programs (by-passing player entirely).

9.2 Architecture

1 1bgazebo uses interprocess communication (IPC) to allow a program to exchange data with a running
simulator. Hereafter, we shall refer to the simulator as the server and the program as the client. Thus, for
example, when using player to interact with Gazebo, Gazebo is the server and player is the client.

The details of the underlying IPC are entirely hidden by 11bgazebo , which should be treated as a
black box for passing data back and forth to the server. Currently, the only limitation users need be aware
of is that both server and client must reside on the same machine; they cannot be run in separate locations
across a network.

9.3 Devicesand Interfaces

1 1bgazebo makes the familiar distinction between devices and interfaces. In Gazebo, a device is a fully
parameterized model, representing a particular real-world object such as a Pioneer2AT robot or a SICK
LMS200 laser. An interface, on the other hand, is a general specification for an entire class of devices, such
as position or laser. Thus, a Pioneer2AT device will present a position interface, while the SICK LMS200
will present a laser interface.

The complete set of interfaces supported by Iibgazebo is described in Chapter 10. Note, however,
that the set of interfaces defined by I'ibgazebo should not be confused with those defined by player .
Currently, these two sets of interfaces are fairly similar, but there is no guarantee that they will remain so in
future.

49

9.4 Usingl i bgazebo

Client programs must connect both to a specific server and a specific set of devices within that server. The
following code snippet illustrates the general behavior:

// main_.c - works with examplel._world

// compile with:

// g++ -Wall -c -0 main.o main.c

// g++ main.o main -L. -lgazebo

// Thanks to Kevin Knoedler for various fixes.

#include <stdio.h>
#include <gazebo.h>

int main (inst argc, char *argv[])

{

// Create a client object
client = gz_client_alloc();

// Connect to the server
gz_client_connect(server_id);

// Create a position interface
position = gz position_alloc();

// Connect to device on server
gz_position_open(position, client, device_id);

// Lock it
gz_position_lock(position, 1);

// Print the current odometric position
printf("%0.3F %0.3F\n"",
position->data->odo_pose[1l], position->data->odo_pose[1l]);

// Unlock it
gz_position_unlock(position);

// Close the interface and free object
gz_position_close(position);
gz_position_free(position);

// Close the connection and free the client object
gz_server_disconnect(client);

gz_server_fTree(client);

return O;

50

Error checking has been removed from this example for the sake of clarity. There are several points to note:

e The value of server_id variable must correspond to the server ID specified in the Gazebo world
file. By default, the ID is defaul t, but other values may be specified if the user is running multiple
instances of Gazebo simultaneously.

e The device_id variable specifies a unique device ID; the value of this variable must correspond to
the device ID specified in the Gazebo world file.

e Any attempt to connect to a device using an unsupported interface will result in the open function
returning an error. For example, if the device specified by device_id is actually a laser, attempting
to open it using gz_position_open() will result in an error.

e Do not use the create and destroy functions associated with each interface; these are reserved
for use by Gazebo only. Use open and close instead.

9.5 Building ProgramsWith | i bgazebo

All public functions are declared in gazebo . h and defined in Iibgazebo . a. The default Gazebo install
script will put these in sensible places, so your compiler should pick them up automatically.

51

Chapter 10

| 1| bgazebo Interface Reference

11bgazebo currently supports the following interfaces:
e camera: supports cameras such as the SonyVID30.
e Tactory : supports adding models at runtime via a Factory model.
e Tiducial : supports simple fiducial finders, such as those based on retro-reflective barcodes.
e gps : supports (D)GPS receivers.
e laser : supports scanning laser range finders, such as the SICK LMS200.
e position: supports basic mobile robot platforms, such as the Pioneer2AT.
e power : reports battery levels.
e ptz: supports pan-tilt-zoom camera heads, such as the SonyVID30.
e truth : reports true pose of objects in the simulator.

A detailed reference for each of these interfaces is included in the following sections.

52

10.1 canera

The camera interface allows clients to read images from a simulated camera. This interface gives the view
of the world as the camera onboard a robotic platform would see it. This can be fed to image processing
algorithms such as the CMVision blobfinder to recover blobs. Useful for testing visual-servoing type stuff.

/] Canera interface
typedef struct gz camera_data_ t

{

// Commobn data structure
gz_data_t head;

/1 Data tinestanp
doubl e ti ne;

/1 1 mage di nensions
unsi gned i nt width, height;

/1 Image depth (bits: 8, 16, 24 or 32)
i nt depth;

/1 1 mage pixel data
unsi gned int inage_size;
unsi gned char i mage[GAZEBO MAX | MAGE_SI ZE] ;

} gz_camera_data_t;

/1 The canera interface
typedef struct _gz camera_t

{
/|l CGeneral interface info
gz_iface_t *iface;

// Pointer to interface data area
gz_canera_data t *data

} gz_canera_t;

/1 Create an interface
extern gz _canera_t *gz_canera_alloc();

/1 Destroy an interface
extern void gz_canera_free(gz_canera_t *self);

/1l Create the interface (used by Gazebo server)
extern int gz_canmera_create(gz_canmera_t *self, gz_server_t *server, const char *id);

/1 Destroy the interface (server)
extern int gz_camera _destroy(gz_canera_t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_camera_open(gz_canera_t *self, gz client_t *client, const char *id);

53

/1 Close the interface (client)
extern int gz _canmera cl ose(gz_canmera_t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock
/1 until the lock is acquired. Returns O if the |lock is acquired.
extern int gz _camera | ock(gz_canera_t *self, int blocking);

/1 Unlock the interface
extern void gz_camera_unl ock(gz_canera_t *self);

54

10.2 factory

The Factory interface allows clients to send XML strings to a factory in order to dynamically create
models.

/1 Factory interface
typedef struct _gz factory_data_t
{

/1 Common data structures
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 String describing the nodel to be instantiated
uint8_ t string[4096];

} gz _factory data_t;

/1 The position interface
typedef struct gz factory_t

{

/] CGeneral interface info
gz_iface_ t *iface;

// Pointer to interface data area
gz_factory data_t *data;

} gz _factory_t;

/] Create an interface
extern gz_factory_t *gz_ factory_alloc();

/1 Destroy an interface
extern void gz factory free(gz factory t *self);

/1l Create the interface (used by Gazebo server)
extern int gz _factory create(gz_factory_ t *self, gz_server_t *server, const char *id);

/1 Destroy the interface (server)
extern int gz factory destroy(gz factory t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_factory_open(gz_factory t *self, gz_client_t *client, const char *id);

/1 Cose the interface (client)
extern int gz factory close(gz factory t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock

/1 until the lock is acquired. Returns O if the lock is acquired.
extern int gz factory lock(gz factory t *self, int blocking);

55

/1 Unlock the interface
extern void gz factory unlock(gz factory t *self);

56

10.3 fi duci al

The Fiducial interface allows clients to determine the identity, range, bearing and orientation (relative
to some sensor) of objects in the world. For example, this interface is used by the SickLMS200 model to

return data from simulated retro-reflective barcodes.

/1 Data for a single fiducia
typedef struct gz fiducial fid_t

{
/1 Fiducial id

int id;

/1 Fiducial range, bearing and orientation
doubl e pose[3];

} gz _fiducial _fid_t;

/1 Fiducial data
typedef struct gz fiducial data_t

{

// Commobn data structures
gz_data_t head;

/1 Data tinestanp
doubl e ti ne;

/] Cbserved fiducials
int fid count;
gz _fiducial fid t fids[GZ FIDUCI AL_NMAX FIDS];

} gz _fiducial _data_t;

/1 The fiducial interface
typedef struct _gz fiducial t

{

!/l CGeneral interface info
gz_iface_t *iface;

// Pointer to interface data area
gz _fiducial _data t *data;

} gz _fiducial _t;

/1l Create an interface
extern gz _fiducial _t *gz fiducial _alloc();

/1 Destroy an interface
extern void gz _fiducial _free(gz_fiducial t *self);

/1l Create the interface (used by Gazebo server)
extern int gz fiducial create(gz fiducial t *self,

57

gz_server_t *server

const char *id);

/1 Destroy the interface (server)
extern int gz _fiducial destroy(gz fiducial t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_fiducial _open(gz_fiducial t *self, gz_client_t *client, const char *id);

/1 Close the interface (client)
extern int gz fiducial _close(gz fiducial t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock
/1 until the lock is acquired. Returns O if the lock is acquired.
extern int gz fiducial |ock(gz fiducial t *self, int blocking);

/1 Unlock the interface
extern void gz_fiducial _unlock(gz_fiducial _t *self);

58

10.4 gps

The gps interface allows the user to receive GPS (Latitude/Longitude/Altitude) information for the robot
platform on which the GPS device is mounted.

/1 GPS interface
typedef struct _gz_gps_data_t
{

// Common data structure
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 Latitude and | ongitude, in degrees.
doubl e | atitude;
doubl e | ongi t ude;

// Atitude, in neters.
doubl e altitude;

/1 UTM coordi nates (neters)
double utme, utmn;

/1 Nunber of satellites in view.
int satellites;

/1 Fix quality
int quality;

/1 Horizontal dilution of position (HDOP)
doubl e hdop;

/1l Errors
doubl e err_horz, err_vert;

12
doubl e origin_longitude, origin_latitude, origin_altitude;

} 9z_gps_data_t;

/'l The GPS interface
typedef struct _gz_gps_t

{
!/l CGeneral interface info
gz_iface_ t *iface;
/] Pointer to interface data area
gz_gps_data_t *dat a;

} 9z_gps_t;

59

/1l Create an interface
extern gz _gps_t *gz_gps_alloc();

/1 Destroy an interface
extern void gz_gps_free(gz_gps_t *self);

/1l Create the interface (used by Gazebo server)
extern int gz _gps_create(gz gps_t *self, gz server_t *server, const char *id);

/1 Destroy the interface (server)
extern int gz_gps_destroy(gz_gps_t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_gps_open(gz_gps_t *self, gz _client_t *client, const char *id);

/1 Cose the interface (client)
extern int gz _gps_close(gz_gps_t *self);

/1 Lock the interface. Set blocking to 1 if the caller should block
/1 until the lock is acquired. Returns O if the lock is acquired.
extern int gz_gps_lock(gz_gps_t *self, int blocking);

/1 Unlock the interface
extern void gz _gps_unlock(gz _gps_t *self);

60

105 | aser

The laser interface allows clients to read data from a simulated laser range finder (such as the SICK
LMS200). Some configuration of this device is also allowed.

/1 Laser data
typedef struct _gz |laser_data_t
{
/1 Comon data structures
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 Range scan angl es
doubl e m n_angl e, max_angl e;

/1 Angul ar resol ution
doubl e res_angl e;

/1 Max range val ue
doubl e max_r ange;

/1 Range readi ngs

i nt range_count;

doubl e ranges[GZ_LASER MAX_ RANCES] ;
int intensity[GZ_LASER MAX_ RANGES]

} gz_laser_data_t;

/] The laser interface
typedef struct _gz |aser _t

{

/|l CGeneral interface info
gz_iface_ t *iface;

// Pointer to interface data area
gz_l aser _data_t *data;

} gz _laser _t;

/] Create an interface
extern gz_laser_t *gz_laser_alloc();

/1 Destroy an interface
extern void gz |aser _free(gz_ laser_t *self);

/!l Create the interface (used by Gazebo server)
extern int gz_laser_create(gz_laser_t *self, gz _server_t *server, const char *id);

/1 Destroy the interface (server)
extern int gz _|laser_destroy(gz |aser_t *self);

61

/1 Open an existing interface (used by Gazebo clients)
extern int gz_|laser _open(gz _laser_t *self, gz client_t *client, const char *id);

/1 Cose the interface (client)
extern int gz _laser _close(gz |laser_t *self);

/1 Lock the interface. Set blocking to 1 if the caller should block
/1 until the lock is acquired. Returns O if the lock is acquired.
extern int gz_laser_lock(gz_laser_t *self, int blocking);

/1 Unlock the interface
extern void gz | aser_unlock(gz |aser_t *self);

62

10.6 position

The position interface allows clients to send commands to and read odometric data from simulated
mobile robot bases, such as the Pioneer2AT or ATRV Jr.

/1 Position interface
typedef struct _gz_position_data_t
{
/1 Comon data structures
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 Pose (usually global cs); rotation is specified by euler angles
doubl e pos[3];
doubl e rot[3];

/1 Velocity; rotation is specified by eul er angles
doubl e vel _pos[3];
doubl e vel rot[3];

/1 Mtor stall flag
int stall;

/! Enable the notors
int cnd_enabl e_notors;

/1 Commanded robot velocities (robot cs); rotation is specified by euler angles
doubl e cnd_vel pos|[3];
doubl e cnd_vel rot[3];

} gz_position_data_t;

/1 The position interface
typedef struct _gz position_t

{

/|l CGeneral interface info
gz_iface_t *iface;

// Pointer to interface data area
gz_position_data t *data;

} gz_position_t;

/1l Create an interface
extern gz _position_t *gz position_alloc();

/1 Destroy an interface
extern void gz_position_free(gz_position_t *self);

/1l Create the interface (used by Gazebo server)

63

extern int gz _position _create(gz position_t *self, gz server_t *server, const char *id);

/1 Destroy the interface (server)
extern int gz_position_destroy(gz_position_t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz _position_open(gz position_t *self, gz client_t *client, const char *id);

/1 Cose the interface (client)
extern int gz_position_close(gz_position_t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock
/1 until the lock is acquired. Returns O if the |lock is acquired.
extern int gz_position_|lock(gz_position_t *self, int blocking);

/1 Unlock the interface
extern void gz position_unlock(gz position_t *self);

64

10.7 power

The power interface allows clients to read battery levels from simulated robots.

/1 Power interface
typedef struct _gz_power_data_t

{

/1 Common data structures
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 Battery levels (volts)
doubl e | evel s[10];

} gz_power data_ t;

/1 The power interface
typedef struct _gz_power _t

{

/|l CGeneral interface info
gz_iface_ t *iface;

/] Pointer to interface data area
gz_power data_t *data;

} gz_power t;

/] Create an interface
extern gz_power_t *gz_power_alloc();

/1 Destroy an interface
extern void gz _power_ free(gz_power_t *self);

/!l Create the interface (used by Gazebo server)

extern int gz_power_create(gz_power_t *self, gz _server_t *server, const char *id);

/1 Destroy the interface (server)
extern int gz_power destroy(gz_power_t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_power_open(gz_power_t *self, gz client_t *client, const char *id);

/1 Close the interface (client)
extern int gz_power close(gz_power_t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock
/1 until the lock is acquired. Returns O if the |lock is acquired.
extern int gz_power | ock(gz power_t *self, int blocking);

/1 Unlock the interface
extern void gz_power_unl ock(gz_power_t *self);

65

66

108 ptz

The ptz interface allows clients to control the pan, tilt and zoom angles on a camera head such as the Sony
VID30.

/1 Ptz interface
typedef struct _gz ptz_data_t
{

// Common data structure
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 Measured orientation (radians)
doubl e pan, tilt;

/1 Measured field of view (radians)
doubl e zoom

/1 Commanded orientation (radians)
doubl e cnd_pan, cnd_tilt;

/1 Commanded field of view (radians)
doubl e cnd_zoom

} gz_ptz_data_t;

/1 The ptz interface
typedef struct gz ptz t

{
// Common data structure
gz_data_t head;

/1 General interface info
gz_iface_ t *iface;

/] Pointer to interface data area
gz_ptz_data_t *data;

} 9z_ptz_t;

/!l Create an interface
extern gz_ptz t *gz_ptz_alloc();

/1 Destroy an interface
extern void gz ptz free(gz_ptz t *self);

/1l Create the interface (used by Gazebo server)
extern int gz_ptz create(gz_ptz_t *self, gz_server_t *server, const char *id);

/1 Destroy the interface (server)

67

extern int gz _ptz destroy(gz ptz t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_ptz_open(gz_ptz_t *self, gz _client_t *client, const char *id);

/1 Cose the interface (client)
extern int gz ptz close(gz ptz t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock
/1 until the lock is acquired. Returns O if the lock is acquired.
extern int gz_ptz_lock(gz_ptz_t *self, int blocking);

/1 Unlock the interface
extern void gz_ptz_unlock(gz_ptz_t *self)

68

109 truth

The truth interface is useful for getting and setting the ground-truth pose of objects in the world; currently,
it is supported only by the TruthWidget model.

/] Truth data
typedef struct _gz truth_data_t

{

/1 Common data structures
gz_data_t head;

/1 Data timestanp
doubl e ti ne;

/1 True object position (x, y, X)
doubl e pos[3];

/1 True object rotation (roll, pitch, yaw)
double rot[3];

/1 New conmand (0 or 1)7?
int cmd_new,

/1 Comanded obj ect position
doubl e cnd_pos|[3];

/1 Commanded object rotation
doubl e cnd_rot[3];

} gz truth data_ t;

/1 The truth interface
typedef struct _gz truth_t

{
/1 General interface info
gz_iface_ t *iface;

/] Pointer to interface data area
gz_truth_data_t *data;

} gz _truth_t;

/1l Create an interface
extern gz_truth_t *gz_truth_alloc();

/1 Destroy an interface
extern void gz truth free(gz_truth_t *self);

/1l Create the interface (used by Gazebo server)
extern int gz_truth create(gz_truth_ t *self, gz _server_t *server, const char *id);

/1 Destroy the interface (server)

69

extern int gz _truth destroy(gz truth_ t *self);

/1 Open an existing interface (used by Gazebo clients)
extern int gz_truth_open(gz_truth_t *self, gz client_t *client, const char *id);

/1 Close the interface (client)
extern int gz truth close(gz truth_t *self);

/1 Lock the interface. Set blocking to 1 if the caller should bl ock
/1 until the lock is acquired. Returns O if the lock is acquired.
extern int gz_truth_lock(gz_truth_t *self, int blocking);

/1 Unlock the interface
extern void gz_truth_unlock(gz_truth_t *self);

70

Appendix A

Platform Specific Build Information

A.l MacOSX

Gazebo has been successfully built on Mac OS X 10.2, using the following steps.

1.

Install Apple’s X11 and X11 developer packages; these can be obtained from Apple’s website with a
little bit of scrounging.

. Install Fink; this can be obtained from

http://fink.sourceforge.net/

. Use Fink to install other packages, such as 1 1tbxml12, gdal and gdal-dev.

Install ODE as per normal, then run ranl b on the installed library:
$ ranlib [path_to_ode_lib]/libode.a
Set the compiler include path. In bash shell:

$ export CPATH=/usr/X11R6/include:/sw/include:/sw/include/gdall
$ export CPPFLAGS=-no-cpp-precomp

Note the extra include paths (Fink sometimes installs things in weird places).

Configure and build Gazebo as per normal.

71

Appendix B

Coding Standards and Conventions

This appendix sets out the basic coding standards and conventions used in Gazebo and 1 ibgazebo.

B.1 Gazebo

Gazebo is written in a C++.

File Naming Conventions

e Source files are camel-capped; e.g., Pioneer2AT.cc.

e C++ header files are suffixed with . hh, C++ source files are suffixed with .cc; e.g., Model _hh,
Model _cc.

e Directory names are lower case, with the exception of model directories, which are camel-capped.

Coding Conventions

e Class and function names are camel-capped with a leading upper-case character; e.g. BoxGeom,
SetGravity().

Variable names are camel-capped with a leading lower-case character, and do not include any type
encoding (no Hungarian); e.g. myVariable.

Class variables and methods are always accessed explicitly: e.g. this->MyMethod() and this->myVariable.

Standard indentation is two spaces (no tab characters).

Matching braces are aligned, e.g.:

it (condition)
{
do_something();

do_something else();

}

72

Other C++ “features”

Use of the following C++ “features” is strongly discouraged:
e Templates and the STL.

e Multiple inheritance.

B.2 |ibgazebo

For maximum compatibility and portability, 1 ibgazebo is written in C.

File Naming Conventions

e Source files are lower-case with underscores; e.g., gz_laser.c.
e Header files are suffixed with . h, C source files are suffixed with .c; e.g.,gazebo.h, libgazebo.c.

e Source files for interfaces are prefixed by gz_; e.g., gz_position.c.

Coding Conventions

e Public functions (i.e., those included in gazebo . h are prefixed by gz _; e.g., gz_laser alloc().

Function names are lower-case with underscores; e.g., my_function().

Variable names are lower-case with underscores, and do not include any type encoding (i.e., no Hun-
garian); e.g., my_variable.

Standard indentation is two spaces (no tab characters).

Matching braces are aligned, e.g.:

if (condition)

{
do_something();

do_something_else();

}

73

